It is known that a lattice simplex of dimension d corresponds a finite abelian subgroup of (R/Z)(d+1). Conversely, given a finite abelian subgroup of (R/Z)(d+1) such that the sum of all entries of each element is an integer, we can obtain a lattice simplex of dimension d. In this paper, we discuss a characterization of Goren stein simplices in terms of the associated finite abelian groups. In particular, we present complete characterizations of Gorenstein simplices whose normalized volume equals p, p(2) and pq, where p and q are prime numbers with p not equal q. Moreover, we compute the volume of the associated dual reflexive simplices of the Gorenstein simplices. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Alexandru Ioan Cuza Univ, Fac Math, 11 Carol I Blvd, RO-700506 Iasi, RomaniaAlexandru Ioan Cuza Univ, Fac Math, 11 Carol I Blvd, RO-700506 Iasi, Romania
机构:
Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, MalaysiaUniv Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
Chin, A. Y. M.
Chen, H., V
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tunku Abdul Rahman, Lee Kong Chian Fac Engn & Sci, Dept Math & Actuarial Sci, Kajang 43000, Selangor, MalaysiaUniv Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia