Gorenstein simplices and the associated finite abelian groups

被引:2
|
作者
Tsuchiya, Akiyoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
关键词
CLASSIFICATION;
D O I
10.1016/j.ejc.2017.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that a lattice simplex of dimension d corresponds a finite abelian subgroup of (R/Z)(d+1). Conversely, given a finite abelian subgroup of (R/Z)(d+1) such that the sum of all entries of each element is an integer, we can obtain a lattice simplex of dimension d. In this paper, we discuss a characterization of Goren stein simplices in terms of the associated finite abelian groups. In particular, we present complete characterizations of Gorenstein simplices whose normalized volume equals p, p(2) and pq, where p and q are prime numbers with p not equal q. Moreover, we compute the volume of the associated dual reflexive simplices of the Gorenstein simplices. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条
  • [31] Finite Abelian Groups via Congruences
    Wooley, Trevor D.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (05): : 482 - 484
  • [32] Power graph of finite abelian groups
    Chelvam, T. Tamizh
    Sattanathan, M.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 16 (01): : 33 - 41
  • [33] Isolated Subgroups of Finite Abelian Groups
    Tarnauceanu, Marius
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 615 - 620
  • [34] On the Heyde theorem for finite Abelian groups
    Feldman, GM
    JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (04) : 929 - 941
  • [35] The Reidemeister Spectrum of Finite Abelian Groups
    Senden, Pieter
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (04) : 940 - 959
  • [36] On perfect bases in finite abelian groups
    Bajnok, Bela
    Berson, Connor
    Just, Hoang Anh
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 525 - 536
  • [37] Complete decompositions of finite abelian groups
    Chin, A. Y. M.
    Chen, H., V
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2019, 30 (03) : 263 - 274
  • [38] Scenery reconstruction on finite abelian groups
    Finucane, Hilary
    Tamuz, Omer
    Yaari, Yariv
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (08) : 2754 - 2770
  • [39] A combinatorial problem on finite Abelian groups
    Gao, WD
    JOURNAL OF NUMBER THEORY, 1996, 58 (01) : 100 - 103
  • [40] On the Capability of Finite Abelian Pairs of Groups
    Hokmabadi, A.
    Afkanpour, M.
    Kayvanfar, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2015, 9 (02) : 1 - 8