The Reidemeister Spectrum of Finite Abelian Groups

被引:0
|
作者
Senden, Pieter [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Kulak Kortrijk Campus, Kortrijk, Belgium
关键词
finite abelian groups; twisted conjugacy; Reidemeister number; Reidemeister spectrum; fixed points; TWISTED CONJUGACY CLASSES; R-INFINITY PROPERTY;
D O I
10.1017/S0013091523000500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite abelian group A, the Reidemeister number of an endomorphism & phi; is the same as the number of fixed points of & phi;, and the Reidemeister spectrum of A is completely determined by the Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian p-group P, we introduce a new number associated to an automorphism & psi; of P that captures the number of fixed points of & psi; and its (additive) multiples, we provide upper and lower bounds for that number, and we prove that every power of p between those bounds occurs as such a number.
引用
收藏
页码:940 / 959
页数:20
相关论文
共 50 条
  • [1] On the Reidemeister spectrum of an Abelian group
    Goldsmith, Brendan
    Karimi, Fatemeh
    White, Noel
    FORUM MATHEMATICUM, 2019, 31 (01) : 199 - 214
  • [2] REIDEMEISTER CLASSES IN WREATH PRODUCTS OF ABELIAN GROUPS
    Fraiman, M., I
    Troitsky, E., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 880 - 888
  • [3] Extreme Reidemeister spectra of finite groups
    Tertooy, Sam
    TOPOLOGY AND ITS APPLICATIONS, 2025, 359
  • [4] Automorphisms with finite Reidemeister number in residually finite groups
    Jabara, Enrico
    JOURNAL OF ALGEBRA, 2008, 320 (10) : 3671 - 3679
  • [5] The Reidemeister spectrum of direct products of nilpotent groups
    Senden, Pieter
    JOURNAL OF GROUP THEORY, 2024, 27 (03) : 519 - 547
  • [6] ON FINITE ABELIAN GROUPS
    HOARE, AHM
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (01): : 40 - &
  • [7] The finite Abelian groups
    Chatelet, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1922, 175 : 85 - 87
  • [8] Decomposing finite Abelian groups
    Cheung, Kevin K. H.
    Mosca, Michele
    Quantum Information and Computation, 2001, 1 (03): : 26 - 32
  • [9] A NOTE ON FINITE ABELIAN GROUPS
    PAIGE, LJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1947, 53 (01) : 49 - 49
  • [10] ISOMORPHISM OF FINITE ABELIAN GROUPS
    MCHAFFEY, R
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (01): : 48 - &