The Reidemeister Spectrum of Finite Abelian Groups

被引:0
|
作者
Senden, Pieter [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Kulak Kortrijk Campus, Kortrijk, Belgium
关键词
finite abelian groups; twisted conjugacy; Reidemeister number; Reidemeister spectrum; fixed points; TWISTED CONJUGACY CLASSES; R-INFINITY PROPERTY;
D O I
10.1017/S0013091523000500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite abelian group A, the Reidemeister number of an endomorphism & phi; is the same as the number of fixed points of & phi;, and the Reidemeister spectrum of A is completely determined by the Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian p-group P, we introduce a new number associated to an automorphism & psi; of P that captures the number of fixed points of & psi; and its (additive) multiples, we provide upper and lower bounds for that number, and we prove that every power of p between those bounds occurs as such a number.
引用
收藏
页码:940 / 959
页数:20
相关论文
共 50 条
  • [31] The symmetric crosscap spectrum of Abelian groups
    A. Bacelo
    J. J. Etayo
    E. Martínez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 633 - 640
  • [32] Complete factorizations of finite abelian groups
    Chin, A. Y. M.
    Wang, K. L.
    Wong, K. B.
    JOURNAL OF ALGEBRA, 2023, 628 : 509 - 523
  • [33] Formal duality in finite abelian groups
    Li, Shuxing
    Pott, Alexander
    Schueler, Robert
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 162 : 354 - 405
  • [34] On the Heyde Theorem for Finite Abelian Groups
    G. M. Feldman
    Journal of Theoretical Probability, 2004, 17 : 929 - 941
  • [35] Difference bases in finite Abelian groups
    Taras Banakh
    Volodymyr Gavrylkiv
    Acta Scientiarum Mathematicarum, 2019, 85 : 119 - 137
  • [36] On hyper (abelian of finite rank) groups
    Wehrfritz, B. A. F.
    ALGEBRA COLLOQUIUM, 2008, 15 (03) : 361 - 370
  • [37] ON A PARTITION PROBLEM OF FINITE ABELIAN GROUPS
    Qu, Zhenhua
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 24 - 31
  • [38] Finite Abelian Groups via Congruences
    Wooley, Trevor D.
    AMERICAN MATHEMATICAL MONTHLY, 2023, 130 (05): : 482 - 484
  • [39] Power graph of finite abelian groups
    Chelvam, T. Tamizh
    Sattanathan, M.
    ALGEBRA & DISCRETE MATHEMATICS, 2013, 16 (01): : 33 - 41
  • [40] Isolated Subgroups of Finite Abelian Groups
    Tarnauceanu, Marius
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) : 615 - 620