On the Heyde theorem for finite Abelian groups

被引:26
|
作者
Feldman, GM [1 ]
机构
[1] Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine
关键词
characterization of probability distributions; idempotent distributions; finite Abelian groups;
D O I
10.1007/s10959-004-0583-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well-known Heyde's characterization theorem for the Gaussian distribution on the real line: if xij are independent random variables, alphaj, betaj are nonzero constants such that betaialphai(-1) +/- betajalphaj(-1) not equal 0 for all i not equal j and the conditional distribution of L-2 = beta(1)xi(1) + ... + beta(n)xi(n) given L-1 = alpha(1)xi(1) + ... + alpha(n)xi(n) is symmetric, then all random variables j are Gaussian. We prove some analogs of this theorem, assuming that independent random variables take on values in a finite Abelian group X and the coefficients alphaj, betaj are automorphisms of X.
引用
收藏
页码:929 / 941
页数:13
相关论文
共 50 条