GOLDIE-SUPPLEMENTED MODULES

被引:30
|
作者
Birkenmeier, G. F. [1 ]
Mutlu, F. Takil [2 ]
Nebiyev, C. [3 ]
Sokmez, N. [3 ]
Tercan, A. [4 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
[3] Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey
[4] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
关键词
16D10; 16D50;
D O I
10.1017/S0017089510000212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a relation on submodules of a module used by both A. W. Goldie and P. F. Smith, we say submodules X, Y of M are beta* equivalent, X beta* Y, if and only if X + Y/X is small in M/X and X + Y/Y is small in M/Y. We show that the beta* relation is an equivalence relation and has good behaviour with respect to addition of submodules, homomorphisms and supplements. We apply these results to introduce the class of G*-supplemented modules and to investigate this class and the class of H-supplemented modules. These classes are located among various well-known classes of modules related to the class of lifting modules. Moreover these classes are used to explore an open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate and delimit the theory.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [41] Generalized supplemented modules
    Wang, Yongduo
    Ding, Nanqing
    TAIWANESE JOURNAL OF MATHEMATICS, 2006, 10 (06): : 1589 - 1601
  • [42] +-ESSENTIAL SUPPLEMENTED MODULES
    Nebiyev, Celil
    Okten, Hasan huseyin
    HONAM MATHEMATICAL JOURNAL, 2024, 46 (04): : 650 - 656
  • [43] Generalizations of ⊕ -supplemented modules
    B. N. Türkmen
    A. Pancar
    Ukrainian Mathematical Journal, 2013, 65 : 612 - 622
  • [44] A generalization of supplemented modules
    Wang, Yongduo
    Wu, Dejun
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 129 - 137
  • [45] ⊕-Cofinitely Supplemented Modules
    H. Çalişici
    A. Pancar
    Czechoslovak Mathematical Journal, 2004, 54 : 1083 - 1088
  • [46] δ-lifting and δ-supplemented modules
    Kosan, Muhammet Tamer
    ALGEBRA COLLOQUIUM, 2007, 14 (01) : 53 - 60
  • [47] Finitely generated supplemented modules are amply supplemented
    Smith, PF
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 69 - 79
  • [48] When Finitely Generated δ-Supplemented Modules Are Supplemented
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2015, 22 (01) : 119 - 130
  • [49] Avoiding modules, co-avoiding modules, Goldie dimension and its dual
    Amini, Babak
    Amini, Afshin
    Momtahan, Ehsan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (06)
  • [50] FINITELY GENERATED δ-SUPPLEMENTED MODULES ARE AMPLY δ-SUPPLEMENTED
    Tribak, Rachid
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 86 (03) : 430 - 439