GOLDIE-SUPPLEMENTED MODULES

被引:30
|
作者
Birkenmeier, G. F. [1 ]
Mutlu, F. Takil [2 ]
Nebiyev, C. [3 ]
Sokmez, N. [3 ]
Tercan, A. [4 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
[3] Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey
[4] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
关键词
16D10; 16D50;
D O I
10.1017/S0017089510000212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a relation on submodules of a module used by both A. W. Goldie and P. F. Smith, we say submodules X, Y of M are beta* equivalent, X beta* Y, if and only if X + Y/X is small in M/X and X + Y/Y is small in M/Y. We show that the beta* relation is an equivalence relation and has good behaviour with respect to addition of submodules, homomorphisms and supplements. We apply these results to introduce the class of G*-supplemented modules and to investigate this class and the class of H-supplemented modules. These classes are located among various well-known classes of modules related to the class of lifting modules. Moreover these classes are used to explore an open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate and delimit the theory.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [21] On ⌖-supplemented Modules
    A. Harmanci
    D. Keskįn
    P. F. Smith
    Acta Mathematica Hungarica, 1999, 83 : 161 - 169
  • [22] On δ*-Supplemented Modules
    Elewi, Alaa Abbas
    Ibrahiem, Tamadher Arif
    BAGHDAD SCIENCE JOURNAL, 2020, 17 (01) : 136 - 140
  • [23] On ⊕-supplemented modules
    Harmanci, A
    Keskin, D
    Smith, PF
    ACTA MATHEMATICA HUNGARICA, 1999, 83 (1-2) : 161 - 169
  • [24] TWO OPEN QUESTIONS ON GOLDIE EXTENDING MODULES
    Wu, Dejun
    Wang, Yongduo
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (08) : 2685 - 2692
  • [25] Goldie absolute direct summand rings and modules
    Truong Cong Quynh
    Sahinkaya, Serap
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2018, 63 (04): : 437 - 445
  • [26] Rad-⊕-Supplemented Modules and Cofinitely Rad-⊕-Supplemented Modules
    Ecevit, Sule
    Kosan, Muhammet T.
    Tribak, Rachid
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 637 - 648
  • [27] tau-SUPPLEMENTED MODULES AND tau-WEAKLY SUPPLEMENTED MODULES
    Kosan, Muhammet Tamer
    ARCHIVUM MATHEMATICUM, 2007, 43 (04): : 251 - 257
  • [28] ON δ-LOCAL MODULES AND AMPLY δ-SUPPLEMENTED MODULES
    Tribak, Rachid
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (02)
  • [29] Fδ-SUPPLEMENTED MODULES
    Turkmen, Burcu Nisanci
    Eryilmaz, Figen
    HONAM MATHEMATICAL JOURNAL, 2020, 42 (02): : 293 - 300
  • [30] On a variation of ⊕-supplemented modules
    Kaynar, Engin
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 38 (01): : 43 - 58