GOLDIE-SUPPLEMENTED MODULES

被引:30
|
作者
Birkenmeier, G. F. [1 ]
Mutlu, F. Takil [2 ]
Nebiyev, C. [3 ]
Sokmez, N. [3 ]
Tercan, A. [4 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
[3] Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey
[4] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
关键词
16D10; 16D50;
D O I
10.1017/S0017089510000212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a relation on submodules of a module used by both A. W. Goldie and P. F. Smith, we say submodules X, Y of M are beta* equivalent, X beta* Y, if and only if X + Y/X is small in M/X and X + Y/Y is small in M/Y. We show that the beta* relation is an equivalence relation and has good behaviour with respect to addition of submodules, homomorphisms and supplements. We apply these results to introduce the class of G*-supplemented modules and to investigate this class and the class of H-supplemented modules. These classes are located among various well-known classes of modules related to the class of lifting modules. Moreover these classes are used to explore an open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate and delimit the theory.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [31] ⊕-cofinitely supplemented modules
    Calisici, H
    Pancar, A
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2004, 54 (04) : 1083 - 1088
  • [32] Generalizations of ⊕-supplemented modules
    Turkmen, B. N.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (04) : 612 - 622
  • [33] ON e*-SUPPLEMENTED MODULES
    Baanoon, Hiba R.
    Khalid, Wasan
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2023, 35 (01) : 95 - 104
  • [34] A variation of supplemented modules
    Bilhan, Gokhan
    Guroglu, Ayse Tugba
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (03) : 418 - 426
  • [35] ON A GENERALIZATION OF ⊕-SUPPLEMENTED MODULES
    Turkmen, Burcu Nisanci
    Davvaz, Bijan
    HONAM MATHEMATICAL JOURNAL, 2019, 41 (03): : 531 - 538
  • [36] On strongly ⊕-supplemented modules
    C. Nebiyev
    A. Pancar
    Ukrainian Mathematical Journal, 2011, 63 : 768 - 775
  • [37] On A Class of δ-Supplemented Modules
    Ungor, Burcu
    Halicioglu, Sait
    Harmanci, Abdullah
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2014, 37 (03) : 703 - 717
  • [38] On a Class of ⊕-Supplemented Modules
    Ungor, Burcu
    Halicioglu, Sait
    Harmanci, Abdullah
    RING THEORY AND ITS APPLICATIONS: RING THEORY SESSION IN HONOR OF T.Y. LAM ON HIS 70TH BIRTHDAY, 2014, 609 : 123 - +
  • [39] ON STRONGLY ⊕-SUPPLEMENTED MODULES
    Nebiyev, C.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (05) : 768 - 775
  • [40] A generalization of supplemented modules
    Inankil, Hatice
    Halicioglu, Sait
    Harmanci, Abdullah
    ALGEBRA & DISCRETE MATHEMATICS, 2011, 11 (01): : 59 - 74