GOLDIE-SUPPLEMENTED MODULES

被引:30
|
作者
Birkenmeier, G. F. [1 ]
Mutlu, F. Takil [2 ]
Nebiyev, C. [3 ]
Sokmez, N. [3 ]
Tercan, A. [4 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
[2] Anadolu Univ, Dept Math, TR-26470 Eskisehir, Turkey
[3] Ondokuz Mayis Univ, Dept Math, TR-55139 Samsun, Turkey
[4] Hacettepe Univ, Dept Math, TR-06532 Ankara, Turkey
关键词
16D10; 16D50;
D O I
10.1017/S0017089510000212
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by a relation on submodules of a module used by both A. W. Goldie and P. F. Smith, we say submodules X, Y of M are beta* equivalent, X beta* Y, if and only if X + Y/X is small in M/X and X + Y/Y is small in M/Y. We show that the beta* relation is an equivalence relation and has good behaviour with respect to addition of submodules, homomorphisms and supplements. We apply these results to introduce the class of G*-supplemented modules and to investigate this class and the class of H-supplemented modules. These classes are located among various well-known classes of modules related to the class of lifting modules. Moreover these classes are used to explore an open question of S. H. Mohamed and B. J. Mueller. Examples are provided to illustrate and delimit the theory.
引用
收藏
页码:41 / 52
页数:12
相关论文
共 50 条
  • [1] ON GOLDIE-SUPPLEMENTED MODULES
    Nebiyev, Celil
    Sokmez, Nurhan
    MISKOLC MATHEMATICAL NOTES, 2023, 24 (01) : 325 - 334
  • [2] Totally Goldie*-Supplemented Modules
    Guroglu, Ayse Tugba
    MATHEMATICS, 2023, 11 (21)
  • [3] Goldie-Rad-Supplemented Modules
    Talebi, Yahya
    Hamzekolaee, Ali Reza Moniri
    Tercan, Adnan
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 205 - 218
  • [4] Amply (weakly) Goldie-Rad-supplemented modules
    Mutlu, Figen Takul
    Algebra & Discrete Mathematics, 2016, 22 (01): : 94 - 101
  • [5] GOLDIE*-SUPPLEMENTED MODULES (vol 52A, pg 41, 2010)
    Birkenmeier, G. F.
    Mutlu, F. Takil
    Nebiyev, C.
    Sokmez, N.
    Tercan, A.
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (02) : 479 - 480
  • [6] GOLDIE MODULES
    CHOWDHURY, KC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1988, 19 (07): : 641 - 652
  • [7] ON SEMIPRIME GOLDIE MODULES
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar Corichi, Angel
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (11) : 4749 - 4768
  • [8] GOLDIE EXTENDING MODULES
    Akalan, Evrim
    Birkenmeier, Gary F.
    Tercan, Adnan
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 663 - 683
  • [9] On the structure of Goldie modules
    Castro Perez, Jaime
    Medina Barcenas, Mauricio
    Rios Montes, Jose
    Zaldivar, Angel
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (07) : 3112 - 3126
  • [10] ON PRIME AND SEMIPRIME GOLDIE MODULES
    Nguyen Van Sanh
    Asawasamrit, S.
    Ahmed, K. F. U.
    Le Phuong Thao
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (02) : 321 - 334