Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks*

被引:36
|
作者
Guo, Qiangqiang [1 ]
Ban, Xuegang [1 ]
Aziz, H. M. Abdul [2 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Kansas State Univ, Civil Engn Dept, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
Human driven vehicles (HDVs); Connected and autonomous vehicles (CAVs); Mixed traffic flow; Dynamic user equilibrium (DUE); Instantaneous dynamic user equilibrium (DUE); Dynamic system optimal (DSO); Dynamic bi-level model; Model predictive control (MPC); ADAPTIVE CRUISE CONTROL; AUTONOMOUS VEHICLES; USER EQUILIBRIA; SYSTEM OPTIMUM; MODEL; ASSIGNMENT; SCHEMES; ORDER;
D O I
10.1016/j.trc.2021.103159
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Improving the system performance of a traffic network by dynamically controlling the routes of connected and automated vehicles (CAVs) is an appealing profit that CAVs can bring to our society. Considering that there may be a long way to achieve 100% CAV penetration, we discuss in this paper the mixed traffic flow of human driven vehicles (HDVs) and CAVs on a transportation network. We first propose a double queue (DQ) based mixed traffic flow model to describe the link dynamics as well as the flow transitions at junctions. Based on this mixed flow model, we develop a dynamic bi-level framework to capture the behavior and interaction of HDVs and CAVs. This results in an optimal control problem with equilibrium constraints (OCPEC), where HDVs' route choice behavior is modeled at the lower level by the instantaneous dynamic user equilibrium (IDUE) principle and the CAVs' route choice is modelled by the dynamic system optimal (DSO) principle at the upper level. We show how to discretize the OCPEC to a mathematical programming with equilibrium constraints (MPEC) and discuss its properties and solution techniques. The non-convex and non-smooth properties of the MPEC make it hard to be efficiently solved. To overcome this disadvantage, we develop a decomposition based heuristic model predictive control (HMPC) method by decomposing the original MPEC problem into two separate problems: one IDUE problem for HDVs and one DSO problem for CAVs. The experiment results show that, compared with the scenario that all vehicles are HDVs, the proposed methods can significantly improve the network performance under the mixed traffic flow of HDVs and CAVs.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Modeling and Analysis of Mixed Traffic Networks with Human-Driven and Autonomous Vehicles
    Qing Xu
    Chaoyi Chen
    Xueyang Chang
    Dongpu Cao
    Mengchi Cai
    Jiawei Wang
    Keqiang Li
    Jianqiang Wang
    Chinese Journal of Mechanical Engineering, 2024, 37 (06) : 520 - 532
  • [22] Modeling and Analysis of Mixed Traffic Networks with Human-Driven and Autonomous Vehicles
    Xu, Qing
    Chen, Chaoyi
    Chang, Xueyang
    Cao, Dongpu
    Cai, Mengchi
    Wang, Jiawei
    Li, Keqiang
    Wang, Jianqiang
    Chinese Journal of Mechanical Engineering (English Edition), 2024, 37 (01):
  • [23] Capacity of Vehicular Networks in Mixed Traffic With CAVs and Human-Driven Vehicles
    Zheng, Zhejian
    Yue, Wenwei
    Li, Changle
    Duan, Peibo
    Cao, Xuelin
    Yue, Peitao
    Wu, Jiaming
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17852 - 17865
  • [24] Connected automated vehicles orchestrating human-driven vehicles: Optimizing traffic speed and density in urban networks
    Amirgholy M.
    Nourinejad M.
    Transportation Research Part C: Emerging Technologies, 2024, 165
  • [25] Characteristics Analysis and Equilibrium Optimization of Mixed Traffic Flow considering Connected Automated and Human-Driven Vehicles
    Zhou, Zhaoming
    Yuan, Jianbo
    Zhou, Shengmin
    Long, Qiong
    Cai, Jianrong
    Zhang, Lei
    Journal of Advanced Transportation, 2022, 2022
  • [26] Characteristics Analysis and Equilibrium Optimization of Mixed Traffic Flow considering Connected Automated and Human-Driven Vehicles
    Zhou, Zhaoming
    Yuan, Jianbo
    Zhou, Shengmin
    Long, Qiong
    Cai, Jianrong
    Zhang, Lei
    JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [27] A Car-following Model for Mixed Traffic Flow Consisting of Human-driven Vehicles and Connected Vehicles
    Wang, Zelong
    Liu, Lin
    Li, Yongfu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2851 - 2856
  • [28] Queue length estimation model for mixed traffic flow of intelligent connected vehicles and human-driven vehicles
    Cao, Ningbo
    Chen, Jiahui
    Zhao, Liying
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (09): : 1935 - 1944
  • [29] Mixed traffic flow of human-driven vehicles and connected autonomous vehicles: String stability and fundamental diagram
    Ma, Lijing
    Qu, Shiru
    Ren, Jie
    Zhang, Xiangzhou
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (02) : 2280 - 2295
  • [30] Traffic capacity implications of automated vehicles mixed with regular vehicles
    Olia, Arash
    Razavi, Saiedeh
    Abdulhai, Baher
    Abdelgawad, Hossam
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 22 (03) : 244 - 262