Mixed traffic flow of human driven vehicles and automated vehicles on dynamic transportation networks*

被引:36
|
作者
Guo, Qiangqiang [1 ]
Ban, Xuegang [1 ]
Aziz, H. M. Abdul [2 ]
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Kansas State Univ, Civil Engn Dept, Manhattan, KS 66506 USA
基金
美国国家科学基金会;
关键词
Human driven vehicles (HDVs); Connected and autonomous vehicles (CAVs); Mixed traffic flow; Dynamic user equilibrium (DUE); Instantaneous dynamic user equilibrium (DUE); Dynamic system optimal (DSO); Dynamic bi-level model; Model predictive control (MPC); ADAPTIVE CRUISE CONTROL; AUTONOMOUS VEHICLES; USER EQUILIBRIA; SYSTEM OPTIMUM; MODEL; ASSIGNMENT; SCHEMES; ORDER;
D O I
10.1016/j.trc.2021.103159
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Improving the system performance of a traffic network by dynamically controlling the routes of connected and automated vehicles (CAVs) is an appealing profit that CAVs can bring to our society. Considering that there may be a long way to achieve 100% CAV penetration, we discuss in this paper the mixed traffic flow of human driven vehicles (HDVs) and CAVs on a transportation network. We first propose a double queue (DQ) based mixed traffic flow model to describe the link dynamics as well as the flow transitions at junctions. Based on this mixed flow model, we develop a dynamic bi-level framework to capture the behavior and interaction of HDVs and CAVs. This results in an optimal control problem with equilibrium constraints (OCPEC), where HDVs' route choice behavior is modeled at the lower level by the instantaneous dynamic user equilibrium (IDUE) principle and the CAVs' route choice is modelled by the dynamic system optimal (DSO) principle at the upper level. We show how to discretize the OCPEC to a mathematical programming with equilibrium constraints (MPEC) and discuss its properties and solution techniques. The non-convex and non-smooth properties of the MPEC make it hard to be efficiently solved. To overcome this disadvantage, we develop a decomposition based heuristic model predictive control (HMPC) method by decomposing the original MPEC problem into two separate problems: one IDUE problem for HDVs and one DSO problem for CAVs. The experiment results show that, compared with the scenario that all vehicles are HDVs, the proposed methods can significantly improve the network performance under the mixed traffic flow of HDVs and CAVs.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Lane management for mixed traffic flow on roadways considering the car-following behaviors of human-driven vehicles to follow connected and automated vehicles
    Zheng, Yuan
    Yao, Zhihong
    Xu, Yueru
    Qu, Xu
    Ran, Bin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 635
  • [32] Coordination of Autonomous Vehicles and Dynamic Traffic Rules in Mixed Automated/Manual Traffic
    Firoozi, Roya
    Quirynen, Rien
    Di Cairano, Stefano
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 1030 - 1035
  • [33] Multiclass dynamic system optimum solution for mixed traffic of human-driven and automated vehicles considering physical queues
    Ngoduy, Dong
    Hoang, N. H.
    Vu, H. L.
    Watling, D.
    TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2021, 145 : 56 - 79
  • [34] A future intelligent traffic system with mixed autonomous vehicles and human-driven vehicles
    Chen, Bokui
    Sun, Duo
    Zhou, Jun
    Wong, Wengfai
    Ding, Zhongjun
    INFORMATION SCIENCES, 2020, 529 : 59 - 72
  • [35] Motion Prediction of Human-Driven Vehicles in Mixed Traffic with Connected Autonomous Vehicles
    Zhang, Linjun
    Tseng, Eric
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 398 - 403
  • [36] Stability analysis and connected vehicles management for mixed traffic flow with platoons of connected automated vehicles
    Qin, Yanyan
    Luo, Qinzhong
    Wang, Hua
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2023, 157
  • [37] Speed Advice for Connected Vehicles at an Isolated Signalized Intersection in a Mixed Traffic Flow Considering Stochasticity of Human Driven Vehicles
    Xiong, Bang-Kai
    Jiang, Rui
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11261 - 11272
  • [38] Optimal toll design problems under mixed traffic flow of human-driven vehicles and connected and autonomous vehicles
    Wang, Jian
    Lu, Lili
    Peeta, Srinivas
    He, Zhengbing
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 125 (125)
  • [39] Modeling of traffic flow of automated vehicles
    Li, K
    Ioannou, P
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2004, 5 (02) : 99 - 113
  • [40] Cooperative Ramp Merging for Mixed Traffic with Connected Automated Vehicles and Human-Operated Vehicles
    Huang, Tianyu
    Sun, Zhanbo
    IFAC PAPERSONLINE, 2019, 52 (24): : 76 - 81