Multi-sensor data fusion between radio tomographic imaging and noise radar

被引:3
|
作者
Vergara, Christopher [1 ]
Martin, Richard K. [2 ]
Collins, Peter J. [2 ]
Lievsay, James R. [2 ]
机构
[1] Australian Def Force, Royal Australian Air Force, Canberra, ACT, Australia
[2] Air Force Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH USA
来源
IET RADAR SONAR AND NAVIGATION | 2020年 / 14卷 / 02期
关键词
sensor fusion; surveillance; radar imaging; image resolution; noise radar communities; multisensor data fusion; radio tomographic imaging; Tikhonov regularisation; target centroid location; target pixel dispersion; ideal solution comparison; disparate sensor technologies; TRACKING;
D O I
10.1049/iet-rsn.2019.0092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radio tomographic imaging and noise radar are two proven surveillance technologies. The novelty of fusing data from radio tomographic imaging and noise radar is achieved with the derivation of a fusion technique utilising Tikhonov regularisation. Analysing the results of the Tikhonov influenced techniques reveals an average 43-47% error decrease in target centroid location, a 13-19% size decreases in target pixel dispersion and a 6-41% improvement in an ideal solution comparison. Results provide the radio tomographic imaging and noise radar communities a proof of concept for the fusion of data from two disparate sensor technologies.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [31] Multi-sensor Data Fusion for Object Rotation Estimation
    Napieralski, Jan Andrzej
    Tylman, Wojciech
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEM (MIXDES 2018), 2018, : 454 - 459
  • [32] Multi-Sensor Data Fusion for MEMS Gyroscope of Seeker
    Ren, Yafei
    Ge, Yunwang
    Bai, Xucan
    ADVANCED MECHANICAL DESIGN, PTS 1-3, 2012, 479-481 : 467 - 470
  • [33] Multi-sensor data fusion for accurate surface modeling
    Mahesh K. Singh
    Ashish Dutta
    K. S. Venkatesh
    Soft Computing, 2020, 24 : 14449 - 14462
  • [34] Exploring Key Technologies of Multi-Sensor Data Fusion
    Wang, Li
    Guo, Hongxia
    Proceedings of the 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016, 71 : 64 - 67
  • [35] Multi-Sensor Data Fusion across Time and Space
    Villeneuve, Pierre V.
    Beaven, Scott G.
    Reed, Robert
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
  • [36] Kodak multi-sensor IMINT fusion data collection
    Mirzaoff, AD
    Vogler, SG
    Coss, J
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL II, 2002, : 792 - 797
  • [37] Target Tracking System for Multi-sensor Data Fusion
    Ma, Ke
    Zhang, Hanguang
    Wang, Rentao
    Zhang, Zhimin
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1768 - 1772
  • [38] IMM Filtering on Parametric Data for Multi-Sensor Fusion
    Shafer, Scott
    Owen, Mark
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2014, 2014, 9092
  • [39] Profiler design with multi-sensor data fusion methods
    Lin, Jium-Ming
    Line, Jiea-Chie
    PROCEEDINGS OF SICE ANNUAL CONFERENCE, VOLS 1-8, 2007, : 707 - +
  • [40] Data fusion of multi-sensor for petroleum geological exploration
    Zhu, XG
    Yin, LP
    2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, : A70 - A75