Multi-sensor data fusion between radio tomographic imaging and noise radar

被引:3
|
作者
Vergara, Christopher [1 ]
Martin, Richard K. [2 ]
Collins, Peter J. [2 ]
Lievsay, James R. [2 ]
机构
[1] Australian Def Force, Royal Australian Air Force, Canberra, ACT, Australia
[2] Air Force Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH USA
来源
IET RADAR SONAR AND NAVIGATION | 2020年 / 14卷 / 02期
关键词
sensor fusion; surveillance; radar imaging; image resolution; noise radar communities; multisensor data fusion; radio tomographic imaging; Tikhonov regularisation; target centroid location; target pixel dispersion; ideal solution comparison; disparate sensor technologies; TRACKING;
D O I
10.1049/iet-rsn.2019.0092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radio tomographic imaging and noise radar are two proven surveillance technologies. The novelty of fusing data from radio tomographic imaging and noise radar is achieved with the derivation of a fusion technique utilising Tikhonov regularisation. Analysing the results of the Tikhonov influenced techniques reveals an average 43-47% error decrease in target centroid location, a 13-19% size decreases in target pixel dispersion and a 6-41% improvement in an ideal solution comparison. Results provide the radio tomographic imaging and noise radar communities a proof of concept for the fusion of data from two disparate sensor technologies.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [41] ALLFlight: Multi-sensor data fusion for helicopter operations
    Doehler, H. -U.
    Lueken, T.
    ENHANCED AND SYNTHETIC VISION 2010, 2010, 7689
  • [42] Advances in Multi-Sensor Data Fusion: Algorithms and Applications
    Dong, Jiang
    Zhuang, Dafang
    Huang, Yaohuan
    Fu, Jingying
    SENSORS, 2009, 9 (10) : 7771 - 7784
  • [43] Determination of Olive Trees with Multi-sensor Data Fusion
    Akcay, Haydar
    Kaya, Sinasi
    Sertel, Elif
    Alganci, Ugur
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [44] MULTI-SENSOR OCEAN COLOR DATA FUSION AND APPLICATIONS
    Wang, Menghua
    Jiang, Lide
    Liu, Xiaoming
    Son, SeungHyun
    Mikelsons, Karlis
    Sun, Junqiang
    Shi, Wei
    Tan, Liqin
    Wang, Xiaolong
    Chu, Mike
    Lance, Veronica
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5090 - 5093
  • [45] Population estimation based on multi-sensor data fusion
    Lu, Zhenyu
    Im, Jungho
    Quackenbush, Lindi
    Halligan, Kerry
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (21) : 5587 - 5604
  • [46] A bionic manipulator based on multi-sensor data fusion
    Qian, Chenghui
    Li, Xiang
    Zhu, Jianfeng
    Liu, Tao
    Li, Ruilin
    Li, Bingyang
    Hu, Mengyuan
    Xin, Yi
    Xu, Yang
    INTEGRATED FERROELECTRICS, 2018, 192 (01) : 10 - 15
  • [47] Multi-sensor Data Fusion by Improved Hough Transformation
    张鸿宾
    High Technology Letters, 1995, (02) : 7 - 11
  • [48] Multi-sensor data fusion using the influence model
    Dong, Wen
    Pentland, Alex
    BSN 2006: INTERNATIONAL WORKSHOP ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS, PROCEEDINGS, 2006, : 72 - +
  • [49] Multi-sensor data fusion for accurate surface modeling
    Sing, Mahesh K.
    Dutta, Ashish
    Venkatesh, K. S.
    SOFT COMPUTING, 2020, 24 (19) : 14449 - 14462
  • [50] An Algorithm for Multi-Sensor Data Fusion Target Tracking
    Liu Guo-cheng
    Wang Yong-ji
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3311 - 3316