Fast Moment Estimation for Generalized Latent Dirichlet Models

被引:3
|
作者
Zhao, Shiwen [1 ]
Engelhardt, Barbara E. [2 ,3 ]
Mukherjee, Sayan [1 ]
Dunson, David B. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[3] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
关键词
Generalized method of moments; Latent Dirichlet allocation; Latent variables; Mixed membership model; Mixed scale data; Tensor factorization;
D O I
10.1080/01621459.2017.1341839
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. A key computational advantage of our method, Moment Estimation for latent Dirichlet models (MELD), is that parameter estimation does not require instantiation of the latent variables. Moreover, performance is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application to several datasets.Supplementary materials for this article are available online.
引用
收藏
页码:1528 / 1540
页数:13
相关论文
共 50 条
  • [31] Dirichlet process mixed generalized linear models
    Mukhopadhyay, S
    Gelfand, AE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 633 - 639
  • [32] An efficient parameter estimation method for generalized Dirichlet priors in naive Bayesian classifiers with multinomial models
    Wong, Tzu-Tsung
    Liu, Chao-Rui
    PATTERN RECOGNITION, 2016, 60 : 62 - 71
  • [33] On Generalized Order of Vector Dirichlet Series of Fast Growth
    Lu, Wanchun
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL, 2015, 119 : 151 - 154
  • [34] Dirichlet Process Mixtures of Generalized Linear Models
    Hannah, Lauren A.
    Blei, David M.
    Powell, Warren B.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 1923 - 1953
  • [35] On Estimation in Latent Variable Models
    Fang, Guanhua
    Li, Ping
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [36] Estimation of generalized linear latent variable models via fully exponential Laplace approximation
    Bianconcini, Silvia
    Cagnone, Silvia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 183 - 193
  • [37] gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r
    Niku, Jenni
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (12): : 2173 - 2182
  • [38] Image hierarchical representations models based on latent dirichlet allocation
    Wang, Fushun
    Li, Yan
    Sun, Xiaohua
    Cai, Zhenjiang
    Journal of Multimedia, 2013, 8 (04): : 358 - 364
  • [39] Latent Dirichlet allocation mixture models for nucleotide sequence analysis
    Wang, Bixuan
    Mount, Stephen M.
    NAR GENOMICS AND BIOINFORMATICS, 2024, 6 (03)
  • [40] HIERARCHICAL LATENT DIRICHLET ALLOCATION MODELS FOR REALISTIC ACTION RECOGNITION
    Li, Heping
    Liu, Jie
    Zhang, Shuwu
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 1297 - 1300