Fast Moment Estimation for Generalized Latent Dirichlet Models

被引:3
|
作者
Zhao, Shiwen [1 ]
Engelhardt, Barbara E. [2 ,3 ]
Mukherjee, Sayan [1 ]
Dunson, David B. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[3] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
关键词
Generalized method of moments; Latent Dirichlet allocation; Latent variables; Mixed membership model; Mixed scale data; Tensor factorization;
D O I
10.1080/01621459.2017.1341839
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. A key computational advantage of our method, Moment Estimation for latent Dirichlet models (MELD), is that parameter estimation does not require instantiation of the latent variables. Moreover, performance is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application to several datasets.Supplementary materials for this article are available online.
引用
收藏
页码:1528 / 1540
页数:13
相关论文
共 50 条
  • [41] Generalized moment estimation of stochastic differential equations
    Márcio Poletti Laurini
    Luiz Koodi Hotta
    Computational Statistics, 2016, 31 : 1169 - 1202
  • [42] Moment estimation in a semiparametric generalized linear model
    Wang, Xueqin
    Peng, Hanxiang
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1624 - 1633
  • [43] Likelihood moment estimation for the generalized pareto distribution
    Zhang, Jin
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (01) : 69 - 77
  • [44] Generalized moment estimation of stochastic differential equations
    Laurini, Marcio Poletti
    Hotta, Luiz Koodi
    COMPUTATIONAL STATISTICS, 2016, 31 (03) : 1169 - 1202
  • [45] Generalized moment estimation for uncertain differential equations
    Liu, Z.
    Applied Mathematics and Computation, 2021, 392
  • [46] Generalized moment estimation for uncertain differential equations
    Liu, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 392
  • [47] Moment Matching Deep Contrastive Latent Variable Models
    Weinberger, Ethan
    Beebe-Wang, Nicasia
    Lee, Su-In
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [48] Minimax Estimation of Conditional Moment Models
    Dikkala, Nishanth
    Lewis, Greg
    Mackey, Lester
    Syrgkanis, Vasilis
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] Parameter estimation in latent profile models
    Dunmur, A.P.
    Titterington, D.M.
    Computational Statistics and Data Analysis, 1998, 27 (04): : 371 - 388
  • [50] Parameter estimation in latent profile models
    Dunmur, AP
    Titterington, DM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 27 (04) : 371 - 388