Dirichlet Process Mixtures of Generalized Linear Models

被引:0
|
作者
Hannah, Lauren A. [1 ]
Blei, David M. [2 ]
Powell, Warren B. [3 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; generalized linear models; posterior consistency; GAUSSIAN PROCESS MODELS; POSTERIOR DISTRIBUTIONS; CONSISTENCY; INFERENCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM produces a global model of the joint distribution through a mixture of local generalized linear models. DP-GLMs allow both continuous and categorical inputs, and can model the same class of responses that can be modeled with a generalized linear model. We study the properties of the DP-GLM, and show why it provides better predictions and density estimates than existing Dirichlet process mixture regression models. We give conditions for weak consistency of the joint distribution and pointwise consistency of the regression estimate.
引用
收藏
页码:1923 / 1953
页数:31
相关论文
共 50 条
  • [1] Dirichlet process mixed generalized linear models
    Mukhopadhyay, S
    Gelfand, AE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 633 - 639
  • [2] Bayesian inference for linear dynamic models with Dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 71 - 84
  • [3] Flexible Bayesian Dirichlet mixtures of generalized linear mixed models for count data
    Adesina, Olumide S.
    Agunbiade, Dawud A.
    Oguntunde, Pelumi E.
    [J]. SCIENTIFIC AFRICAN, 2021, 13
  • [4] Sampling schemes for generalized linear Dirichlet process random effects models
    Kyung, Minjung
    Gill, Jeff
    Casella, George
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2011, 20 (03): : 259 - 290
  • [5] Generalized spatial dirichlet process models
    Duan, Jason A.
    Guindani, Michele
    Gelfand, Alan E.
    [J]. BIOMETRIKA, 2007, 94 (04) : 809 - 825
  • [6] Dirichlet Process Mixtures of Linear Mixed Regressions
    Kyung, Minjung
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (06) : 625 - 637
  • [7] Nonlinear Models Using Dirichlet Process Mixtures
    Shahbaba, Babak
    Neal, Radford
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 1829 - 1850
  • [8] Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm
    Heinzl, Felix
    Tutz, Gerhard
    [J]. STATISTICAL MODELLING, 2013, 13 (01) : 41 - 67
  • [9] Inference in Dirichlet process mixed generalized linear models by using Monte Carlo EM
    Naskar, M
    Das, K
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2004, 46 (04) : 685 - 701
  • [10] Rejoinder to the discussion of “Sampling schemes for generalized linear Dirichlet process random effects models”
    Minjung Kyung
    Jeff Gill
    George Casella
    [J]. Statistical Methods & Applications, 2011, 20 : 303 - 304