Fast Moment Estimation for Generalized Latent Dirichlet Models

被引:3
|
作者
Zhao, Shiwen [1 ]
Engelhardt, Barbara E. [2 ,3 ]
Mukherjee, Sayan [1 ]
Dunson, David B. [1 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[3] Princeton Univ, Ctr Stat & Machine Learning, Princeton, NJ 08544 USA
关键词
Generalized method of moments; Latent Dirichlet allocation; Latent variables; Mixed membership model; Mixed scale data; Tensor factorization;
D O I
10.1080/01621459.2017.1341839
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a generalized method of moments (GMM) approach for fast parameter estimation in a new class of Dirichlet latent variable models with mixed data types. Parameter estimation via GMM has computational and statistical advantages over alternative methods, such as expectation maximization, variational inference, and Markov chain Monte Carlo. A key computational advantage of our method, Moment Estimation for latent Dirichlet models (MELD), is that parameter estimation does not require instantiation of the latent variables. Moreover, performance is agnostic to distributional assumptions of the observations. We derive population moment conditions after marginalizing out the sample-specific Dirichlet latent variables. The moment conditions only depend on component mean parameters. We illustrate the utility of our approach on simulated data, comparing results from MELD to alternative methods, and we show the promise of our approach through the application to several datasets.Supplementary materials for this article are available online.
引用
收藏
页码:1528 / 1540
页数:13
相关论文
共 50 条
  • [1] Estimation of generalized linear latent variable models
    Huber, P
    Ronchetti, E
    Victoria-Feser, MP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 893 - 908
  • [2] Fast estimation of multiple group generalized linear latent variable models for categorical observed variables
    Andersson, Bjorn
    Jin, Shaobo
    Zhang, Maoxin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 182
  • [3] Generalized Method of Moment estimation of multivariate multifractal models
    Liu, Ruipeng
    Lux, Thomas
    ECONOMIC MODELLING, 2017, 67 : 136 - 148
  • [4] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [5] Fast moment-based estimation for hierarchical models
    Perry, Patrick O.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 267 - 291
  • [6] Fast estimation of generalized linear latent variable models for performance and process data with ordinal, continuous, and count observed variables
    Zhang, Maoxin
    Andersson, Bjoern
    Jin, Shaobo
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2024, 77 (03): : 477 - 507
  • [7] Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals
    Chen, Xiaohong
    Pouzo, Demian
    ECONOMETRICA, 2012, 80 (01) : 277 - 321
  • [8] Comparison of Estimation Algorithms for Latent Dirichlet Allocation
    Mardones-Segovia, Constanza
    Choi, Hye-Jeong
    Hong, Minju
    Wheeler, Jordan M.
    Cohen, Allan S.
    QUANTITATIVE PSYCHOLOGY, 2022, 393 : 27 - 37
  • [9] GPLDA: A Generalized Poisson Latent Dirichlet Topic Model
    Bala, Ibrahim Bakari
    Saringat, Mohd Zainuri
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 403 - 407
  • [10] Latent Dirichlet Allocation Models for Image Classification
    Rasiwasia, Nikhil
    Vasconcelos, Nuno
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (11) : 2665 - 2679