Efficient estimation of generalized linear latent variable models

被引:41
|
作者
Niku, Jenni [1 ]
Brooks, Wesley [2 ]
Herliansyah, Riki [3 ]
Hui, Francis K. C. [4 ]
Taskinen, Sara [1 ]
Warton, David I. [2 ,5 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[3] Kalimantan Inst Technol, Dept Math, Kalimantan, Indonesia
[4] Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, Australia
[5] Univ New South Wales, Evolut & Ecol Res Ctr, Sydney, NSW, Australia
来源
PLOS ONE | 2019年 / 14卷 / 05期
关键词
SPECIES DISTRIBUTION MODELS; AUTOMATIC DIFFERENTIATION; APPROXIMATION; ASSOCIATIONS; ORDINATION; INFERENCE; DISCRETE; TRAIT;
D O I
10.1371/journal.pone.0216129
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Generalized linear latent variable models (GLLVM) are popular tools for modeling multivariate, correlated responses. Such data are often encountered, for instance, in ecological studies, where presence- absences, counts, or biomass of interacting species are collected from a set of sites. Until very recently, the main challenge in fitting GLLVMs has been the lack of computationally efficient estimation methods. For likelihood based estimation, several closed form approximations for the marginal likelihood of GLLVMs have been proposed, but their efficient implementations have been lacking in the literature. To fill this gap, we show in this paper how to obtain computationally convenient estimation algorithms based on a combination of either the Laplace approximation method or variational approximation method, and automatic optimization techniques implemented in R software. An extensive set of simulation studies is used to assess the performances of different methods, from which it is shown that the variational approximation method used in conjunction with automatic optimization offers a powerful tool for estimation.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Estimation of generalized linear latent variable models
    Huber, P
    Ronchetti, E
    Victoria-Feser, MP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 893 - 908
  • [2] Bounded-influence robust estimation in generalized linear latent variable models
    Moustaki, Irini
    Victoria-Feser, Maria-Pia
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (474) : 644 - 653
  • [3] Estimation of generalized linear latent variable models via fully exponential Laplace approximation
    Bianconcini, Silvia
    Cagnone, Silvia
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 183 - 193
  • [4] Marginal likelihood estimation from the Metropolis output: tips and tricks for efficient implementation in generalized linear latent variable models
    Vitoratou, Silia
    Ntzoufras, Ioannis
    Moustaki, Irini
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (10) : 2091 - 2105
  • [5] Variational Approximations for Generalized Linear Latent Variable Models
    Hui, Francis K. C.
    Warton, David I.
    Ormerod, John T.
    Haapaniemi, Viivi
    Taskinen, Sara
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 35 - 43
  • [6] Parameter constraints in generalized linear latent variable models
    Tsonaka, R.
    Moustaki, I.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4164 - 4177
  • [7] Generalized Linear Latent Variable Models with Flexible Distribution of Latent Variables
    Irincheeva, Irina
    Cantoni, Eva
    Genton, Marc G.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (04) : 663 - 680
  • [8] Fast estimation of multiple group generalized linear latent variable models for categorical observed variables
    Andersson, Bjorn
    Jin, Shaobo
    Zhang, Maoxin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 182
  • [9] Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
    Kidziński, Lukasz
    Hui, Francis K.C.
    Warton, David I.
    Hastie, Trevor J.
    [J]. Journal of Machine Learning Research, 2022, 23
  • [10] Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
    Kidzinski, Lukasz
    Hui, Francis K. C.
    Warton, David I.
    Hastie, Trevor J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23