A mixture of generalized latent variable models for mixed mode and heterogeneous data

被引:20
|
作者
Cai, Jing-Heng [2 ]
Song, Xin-Yuan [1 ]
Lam, Kwok-Hap [1 ]
Ip, Edward Hak-Sing [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Dept Stat, Guangzhou 510275, Guangdong, Peoples R China
[3] Wake Forest Univ Hlth Sci, Dept Biostat Sci, Div Publ Hlth Sci, Winston Salem, NC USA
基金
中国国家自然科学基金;
关键词
Bayesian approach; Generalized latent variable model; Heterogeneous data; STRUCTURAL EQUATION MODELS; BAYESIAN-ANALYSIS; FINITE MIXTURES; UNKNOWN NUMBER; MISSING DATA; SELECTION; TRAIT;
D O I
10.1016/j.csda.2011.05.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the behavioral, biomedical, and social-psychological sciences, mixed data types such as continuous, ordinal, count, and nominal are common. Subpopulations also often exist and contribute to heterogeneity in the data. In this paper, we propose a mixture of generalized latent variable models (GLVMs) to handle mixed types of heterogeneous data. Different link functions are specified to model data of multiple types. A Bayesian approach, together with the Markov chain Monte Carlo (MCMC) method, is used to conduct the analysis. A modified DIC is used for model selection of mixture components in the GLVMs. A simulation study shows that our proposed methodology performs satisfactorily. An application of mixture GLVM to a data set from the National Longitudinal Surveys of Youth (NLSY) is presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2889 / 2907
页数:19
相关论文
共 50 条
  • [21] Efficient estimation of generalized linear latent variable models
    Niku, Jenni
    Brooks, Wesley
    Herliansyah, Riki
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    PLOS ONE, 2019, 14 (05):
  • [22] Variational Approximations for Generalized Linear Latent Variable Models
    Hui, Francis K. C.
    Warton, David I.
    Ormerod, John T.
    Haapaniemi, Viivi
    Taskinen, Sara
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (01) : 35 - 43
  • [23] Parameter constraints in generalized linear latent variable models
    Tsonaka, R.
    Moustaki, I.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4164 - 4177
  • [24] Bayesian Regularized Multivariate Generalized Latent Variable Models
    Feng, Xiang-Nan
    Wu, Hao-Tian
    Song, Xin-Yuan
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2017, 24 (03) : 341 - 358
  • [25] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Yang, MS
    Lai, CY
    SOFT COMPUTING, 2005, 9 (07) : 519 - 524
  • [26] Mixture Poisson regression models for heterogeneous count data based on latent and fuzzy class analysis
    Miin-Shen Yang
    Chien-Yo Lai
    Soft Computing, 2005, 9 : 519 - 524
  • [27] Comparison of strategies for scalable causal discovery of latent variable models from mixed data
    Raghu V.K.
    Ramsey J.D.
    Morris A.
    Manatakis D.V.
    Sprites P.
    Chrysanthis P.K.
    Glymour C.
    Benos P.V.
    International Journal of Data Science and Analytics, 2018, 6 (1) : 33 - 45
  • [28] Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
    Kidziński, Lukasz
    Hui, Francis K.C.
    Warton, David I.
    Hastie, Trevor J.
    Journal of Machine Learning Research, 2022, 23
  • [29] Generalized Matrix Factorization: efficient algorithms for fitting generalized linear latent variable models to large data arrays
    Kidzinski, Lukasz
    Hui, Francis K. C.
    Warton, David I.
    Hastie, Trevor J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [30] Latent variable mixture models in research on learning and individual differences
    McMullen, Jake
    Hickendorff, Marian
    LEARNING AND INDIVIDUAL DIFFERENCES, 2018, 66 : 1 - 3