A mixture of generalized latent variable models for mixed mode and heterogeneous data

被引:20
|
作者
Cai, Jing-Heng [2 ]
Song, Xin-Yuan [1 ]
Lam, Kwok-Hap [1 ]
Ip, Edward Hak-Sing [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Shatin, Hong Kong, Peoples R China
[2] Sun Yat Sen Univ, Dept Stat, Guangzhou 510275, Guangdong, Peoples R China
[3] Wake Forest Univ Hlth Sci, Dept Biostat Sci, Div Publ Hlth Sci, Winston Salem, NC USA
基金
中国国家自然科学基金;
关键词
Bayesian approach; Generalized latent variable model; Heterogeneous data; STRUCTURAL EQUATION MODELS; BAYESIAN-ANALYSIS; FINITE MIXTURES; UNKNOWN NUMBER; MISSING DATA; SELECTION; TRAIT;
D O I
10.1016/j.csda.2011.05.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the behavioral, biomedical, and social-psychological sciences, mixed data types such as continuous, ordinal, count, and nominal are common. Subpopulations also often exist and contribute to heterogeneity in the data. In this paper, we propose a mixture of generalized latent variable models (GLVMs) to handle mixed types of heterogeneous data. Different link functions are specified to model data of multiple types. A Bayesian approach, together with the Markov chain Monte Carlo (MCMC) method, is used to conduct the analysis. A modified DIC is used for model selection of mixture components in the GLVMs. A simulation study shows that our proposed methodology performs satisfactorily. An application of mixture GLVM to a data set from the National Longitudinal Surveys of Youth (NLSY) is presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:2889 / 2907
页数:19
相关论文
共 50 条
  • [31] Gaussian Mixture Modeling with Gaussian Process Latent Variable Models
    Nickisch, Hannes
    Rasmussen, Carl Edward
    PATTERN RECOGNITION, 2010, 6376 : 272 - 282
  • [32] Bayesian latent variable models for clustered mixed outcomes
    Dunson, DB
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 355 - 366
  • [33] Bayesian latent variable models for mixed discrete outcomes
    Dunson, DB
    Herring, AH
    BIOSTATISTICS, 2005, 6 (01) : 11 - 25
  • [34] Latent variable models for mixed discrete and continuous outcomes
    Sammel, MD
    Ryan, LM
    Legler, JM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (03): : 667 - 678
  • [35] LATENT VARIABLE MODELS FOR CLUSTERED ORDINAL DATA
    QU, YS
    PIEDMONTE, MR
    MEDENDORP, SV
    BIOMETRICS, 1995, 51 (01) : 268 - 275
  • [36] gllvm: Fast analysis of multivariate abundance data with generalized linear latent variable models in r
    Niku, Jenni
    Hui, Francis K. C.
    Taskinen, Sara
    Warton, David I.
    METHODS IN ECOLOGY AND EVOLUTION, 2019, 10 (12): : 2173 - 2182
  • [37] Mixture separation for mixed-mode data
    Lawrence, CJ
    Krzanowski, WJ
    STATISTICS AND COMPUTING, 1996, 6 (01) : 85 - 92
  • [38] LIMITED INFORMATION PARAMETER ESTIMATES FOR LATENT OR MIXED MANIFEST AND LATENT VARIABLE MODELS
    LANCE, CE
    CORNWELL, JM
    MULAIK, SA
    MULTIVARIATE BEHAVIORAL RESEARCH, 1988, 23 (02) : 171 - 187
  • [39] Generalized latent variable models with non-linear effects
    Rizopoulos, Dimitris
    Moustaki, Irini
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2008, 61 : 415 - 438
  • [40] GENERALIZED MULTIMODE LATENT VARIABLE MODELS - IMPLEMENTATION BY STANDARD PROGRAMS
    BENTLER, PM
    POON, WY
    LEE, SY
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1988, 7 (02) : 107 - 118