共 50 条
HERMITE VARIATIONS OF THE FRACTIONAL BROWNIAN SHEET
被引:11
|作者:
Reveillac, Anthony
[1
]
Stauch, Michael
[1
]
Tudor, Ciprian A.
[2
]
机构:
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Univ Lille 1, UFR Math, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
基金:
奥地利科学基金会;
关键词:
Limit theorems;
Hermite variations;
multiple stochastic integrals;
Malliavin calculus;
weak convergence;
CENTRAL LIMIT-THEOREMS;
POWER VARIATIONS;
APPROXIMATION;
FUNCTIONALS;
CONVERGENCE;
D O I:
10.1142/S0219493711500213
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet W-alpha,W-beta with Hurst parameter (alpha, beta) is an element of (0, 1)(2). When 0 < alpha <= 1 - 1/2q or 0 < beta <= 1 - 1/2q a central limit theorem holds for the renormalized Hermite variations of order q >= 2, while for 1 - 1/2q < alpha, beta < 1 we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time (1, 1).
引用
收藏
页数:21
相关论文