HERMITE VARIATIONS OF THE FRACTIONAL BROWNIAN SHEET

被引:11
|
作者
Reveillac, Anthony [1 ]
Stauch, Michael [1 ]
Tudor, Ciprian A. [2 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Univ Lille 1, UFR Math, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
基金
奥地利科学基金会;
关键词
Limit theorems; Hermite variations; multiple stochastic integrals; Malliavin calculus; weak convergence; CENTRAL LIMIT-THEOREMS; POWER VARIATIONS; APPROXIMATION; FUNCTIONALS; CONVERGENCE;
D O I
10.1142/S0219493711500213
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet W-alpha,W-beta with Hurst parameter (alpha, beta) is an element of (0, 1)(2). When 0 < alpha <= 1 - 1/2q or 0 < beta <= 1 - 1/2q a central limit theorem holds for the renormalized Hermite variations of order q >= 2, while for 1 - 1/2q < alpha, beta < 1 we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time (1, 1).
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Optimality of an explicit series expansion of the fractional Brownian sheet
    Dzhaparidze, K
    van Zanten, H
    STATISTICS & PROBABILITY LETTERS, 2005, 71 (04) : 295 - 301
  • [32] Fractional Brownian Motion and Sheet as White Noise Functionals
    Zhi Yuan Huang
    Chu Jin Li
    Jian Ping Wan
    Ying Wu
    Acta Mathematica Sinica, 2006, 22 : 1183 - 1188
  • [33] Fractional Brownian motion and sheet as white noise functionals
    Huang, Zhi Yuan
    Li, Chu Jin
    Wan, Jian Ping
    Wu, Ying
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1183 - 1188
  • [34] Mixed Fractional Heat Equation Driven by Fractional Brownian Sheet and Levy Process
    Xia, Dengfeng
    Yan, Litan
    Fei, Weiyin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [35] Asymptotic Behavior of Weighted Power Variations of Fractional Brownian Motion in Brownian Time
    Zeineddine, Raghid
    JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (03) : 1539 - 1589
  • [36] Asymptotic Behavior of Weighted Power Variations of Fractional Brownian Motion in Brownian Time
    Raghid Zeineddine
    Journal of Theoretical Probability, 2018, 31 : 1539 - 1589
  • [37] Weak convergence to the fractional Brownian sheet using martingale differences
    Wang, Zhi
    Yan, Litan
    Yu, Xianye
    STATISTICS & PROBABILITY LETTERS, 2014, 92 : 72 - 78
  • [38] Weak approximation of the fractional Brownian sheet from random walks
    Wang, Zhi
    Yan, Litan
    Yu, Xianye
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 13
  • [39] Almost-sure path properties of fractional Brownian sheet
    Wang, Wensheng
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (05): : 619 - 631
  • [40] A note on the differentiation formula in Stratonovich type for fractional Brownian sheet
    Yoon Tae Kim
    Journal of the Korean Statistical Society, 2009, 38 : 259 - 265