Liouville theorems for the stationary Navier-Stokes equation on a hyperbolic space

被引:2
|
作者
Chan, Chi Hin [1 ]
Czubak, Magdalena [2 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan
[2] Univ Colorado Boulder, Dept Math, Campus Box 395, Boulder, CO 80309 USA
关键词
Steady state; Stationary Navier-Stokes; Lionville theorems; Hyperbolic space; REGULARITY; BOUNDARY; EULER;
D O I
10.1016/j.jmaa.2017.11.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem for the stationary Navier-Stokes equation in 3D under finite Dirichlet norm is open. In this, paper we answer the analogous question on the 3D hyperbolic space. We also address other dimensions and more general manifolds. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 231
页数:16
相关论文
共 50 条
  • [1] Liouville type theorems for stationary Navier-Stokes equations
    Tsai, Tai-Peng
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (01):
  • [2] Notes on Liouville type theorems for the stationary compressible Navier-Stokes equations
    Li, Zhouyu
    Niu, Pengcheng
    APPLIED MATHEMATICS LETTERS, 2021, 114
  • [3] A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions
    Kozono, Hideo
    Terasawa, Yutaka
    Wakasugi, Yuta
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (02) : 804 - 818
  • [4] On the Liouville theorem for the stationary Navier-Stokes equations in a critical space
    Chae, Dongho
    Yoneda, Tsuyoshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 706 - 710
  • [5] Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces
    Chamorro, Diego
    Jarrin, Oscar
    Lemarie-Rieusset, Pierre-Gilles
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (03): : 689 - 710
  • [6] Liouville theorems for the Navier-Stokes equations and applications
    Koch, Gabriel
    Nadirashvili, Nikolai
    Seregin, Gregory A.
    Sverak, Vladimir
    ACTA MATHEMATICA, 2009, 203 (01) : 83 - 105
  • [7] Liouville type theorems for the Euler and the Navier-Stokes equations
    Chae, Dongho
    ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2855 - 2868
  • [8] Liouville-type theorems for the Navier-Stokes equations
    Seregin, G. A.
    Shilkin, T. N.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (04) : 661 - 724
  • [9] Liouville type theorem for stationary Navier-Stokes equations
    Seregin, G.
    NONLINEARITY, 2016, 29 (08) : 2191 - 2195
  • [10] On Liouville type theorem for the stationary Navier-Stokes equations
    Chae, Dongho
    Wolf, Jorg
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)