Liouville type theorems for stationary Navier-Stokes equations

被引:5
|
作者
Tsai, Tai-Peng [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
来源
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1007/s42985-020-00056-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that any smooth stationary solution of the 3D incompressible Navier-Stokes equations in the whole space, the half space, or a periodic slab must vanish under the condition that for some 0 <=delta <= 1<L and q=6(3-delta)/(6-delta), lim inf (R ->infinity)1/R & Vert;u & Vert;(3-delta)(Lq(R<|x|<LR))=0. We also prove sufficient conditions allowing shrinking radii ratio L=1+R-alpha. Similar results hold on a slab with zero boundary condition by assuming stronger decay rates. We do not assume global bound of the velocity. The key is to estimate the pressure locally in the annuli with radii ratio L arbitrarily close to 1.
引用
收藏
页数:20
相关论文
共 50 条