We show that any smooth stationary solution of the 3D incompressible Navier-Stokes equations in the whole space, the half space, or a periodic slab must vanish under the condition that for some 0 <=delta <= 1<L and q=6(3-delta)/(6-delta), lim inf (R ->infinity)1/R & Vert;u & Vert;(3-delta)(Lq(R<|x|<LR))=0. We also prove sufficient conditions allowing shrinking radii ratio L=1+R-alpha. Similar results hold on a slab with zero boundary condition by assuming stronger decay rates. We do not assume global bound of the velocity. The key is to estimate the pressure locally in the annuli with radii ratio L arbitrarily close to 1.
机构:
Voronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, RussiaVoronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, Russia
Seregin, G. A.
Shilkin, T. N.
论文数: 0引用数: 0
h-index: 0
机构:
Voronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, RussiaVoronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, Russia
机构:
Chung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea
Korea Inst Adv Study, Sch Math, Hoegi Ro 85, Seoul 02455, South KoreaChung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea
Chae, Dongho
Wolf, Jorg
论文数: 0引用数: 0
h-index: 0
机构:
Chung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South KoreaChung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea