We prove several Liouville type results for stationary solutions of the d-dimensional compressible Navier-Stokes equations. In particular, we show that when the dimension d >= 4, the natural requirements p is an element of L-infinity (R-d),v is an element of H-1 (R-d) suffice to guarantee that the solution is trivial. For dimensions d = 2,3, we assume the extra condition v is an element of L (3d/d-1) (R-d). This improves a recent result of Chae [1].
机构:
Voronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, RussiaVoronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, Russia
Seregin, G. A.
Shilkin, T. N.
论文数: 0引用数: 0
h-index: 0
机构:
Voronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, RussiaVoronezh State Univ, Steklov Math Inst, St Petersburg Dept, Voronezh, Russia