ON SOME LIOUVILLE TYPE THEOREMS FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:10
|
作者
Li, Dong [1 ]
Yu, Xinwei [2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Compressible Navier-Stokes; Liouville;
D O I
10.3934/dcds.2014.34.4719
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove several Liouville type results for stationary solutions of the d-dimensional compressible Navier-Stokes equations. In particular, we show that when the dimension d >= 4, the natural requirements p is an element of L-infinity (R-d),v is an element of H-1 (R-d) suffice to guarantee that the solution is trivial. For dimensions d = 2,3, we assume the extra condition v is an element of L (3d/d-1) (R-d). This improves a recent result of Chae [1].
引用
下载
收藏
页码:4719 / 4733
页数:15
相关论文
共 50 条