On Liouville type theorem for the stationary Navier-Stokes equations

被引:28
|
作者
Chae, Dongho [1 ,2 ]
Wolf, Jorg [1 ]
机构
[1] Chung Ang Univ, Dept Math, Heukseok Ro 84, Seoul 06974, South Korea
[2] Korea Inst Adv Study, Sch Math, Hoegi Ro 85, Seoul 02455, South Korea
关键词
35Q30; 76D05; 76D03;
D O I
10.1007/s00526-019-1549-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a Liouville type theorem for the stationary Navier-Stokes equations in R3. Let V=(Vij) be a potential function of a smooth solution u, which means u=delta<bold>V</bold>. We show that if there exists 3<s<+ such that the Ls mean oscillation of the potential function has certain growth condition near infinity, namely then u0.
引用
收藏
页数:11
相关论文
共 50 条