Variance Analysis for Monte Carlo Integration

被引:38
|
作者
Pilleboue, Adrien [1 ]
Singh, Gurprit [1 ]
Coeurjolly, David [2 ]
Kazhdan, Michael [3 ]
Ostromoukhov, Victor [1 ,2 ]
机构
[1] Univ Lyon 1, F-69622 Villeurbanne, France
[2] CNRS, LIRIS, UMR 5205, Paris, France
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
关键词
Stochastic Sampling; Monte Carlo Integration; Fourier Analysis; Spherical Harmonics; Global Illumination; WANG TILES; EQUIDISTRIBUTION; FRAMEWORK;
D O I
10.1145/2766930
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a new spectral analysis of the variance in Monte Carlo integration, expressed in terms of the power spectra of the sampling pattern and the integrand involved. We build our framework in the Euclidean space using Fourier tools and on the sphere using spherical harmonics. We further provide a theoretical background that explains how our spherical framework can be extended to the hemispherical domain. We use our framework to estimate the variance convergence rate of different state-of-the-art sampling patterns in both the Euclidean and spherical domains, as the number of samples increases. Furthermore, we formulate design principles for constructing sampling methods that can be tailored according to available resources. We validate our theoretical framework by performing numerical integration over several integrands sampled using different sampling patterns.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Monte Carlo integration of Cr functions with adaptive variance reduction: an asymptotic analysis
    Plaskota, Leszek
    Przybylowicz, Pawel
    Stepien, Lukasz
    BIT NUMERICAL MATHEMATICS, 2023, 63 (02)
  • [2] ANALYSIS OF THE VARIANCE IN MONTE-CARLO CALCULATIONS
    DUBI, A
    NUCLEAR SCIENCE AND ENGINEERING, 1979, 72 (01) : 108 - 120
  • [3] Correlation method for variance reduction of Monte Carlo integration in RS-HDMR
    Li, GY
    Rabitz, H
    Wang, SW
    Georgopoulos, PG
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (03) : 277 - 283
  • [4] Variance and Convergence Analysis of Monte Carlo Line and Segment Sampling
    Singh, Gurprit
    Miller, Bailey
    Jarosz, Wojciech
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 79 - 89
  • [5] VARIANCE REDUCTION AND ROBUST PROCEDURES IN MONTE-CARLO ANALYSIS
    GENTLE, JE
    OPERATIONS RESEARCH, 1975, 23 : B415 - B415
  • [6] Monte Carlo integration with adaptive variance selection for improved stochastic efficient global optimization
    Carraro, Felipe
    Lopez, Rafael Holdorf
    Fadel Miguel, Leandro Fleck
    Torii, Andre Jacomel
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (01) : 245 - 268
  • [7] Monte Carlo integration with adaptive variance selection for improved stochastic efficient global optimization
    Felipe Carraro
    Rafael Holdorf Lopez
    Leandro Fleck Fadel Miguel
    André Jacomel Torii
    Structural and Multidisciplinary Optimization, 2019, 60 : 245 - 268
  • [8] On the use of stochastic approximation Monte Carlo for Monte Carlo integration
    Liang, Faming
    STATISTICS & PROBABILITY LETTERS, 2009, 79 (05) : 581 - 587
  • [9] Integration of scenarios and Monte Carlo simulation in risk analysis
    Vrbova, Lucie
    Fotr, Jiri
    MANAGING AND MODELLING OF FINANCIAL RISKS - 8TH INTERNATIONAL SCIENTIFIC CONFERENCE PROCEEDINGS, PT III, 2016, : 1055 - 1061
  • [10] ANALYSIS OF VARIANCE METHODS FOR DESIGN AND ANALYSIS OF MONTE-CARLO STATISTICAL STUDIES
    WIKE, EL
    CHURCH, JD
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1977, 10 (02) : 131 - 133