Conditions for ballisticity and invariance principle for random walk in non-elliptic random environment

被引:4
|
作者
Holmes, Mark [1 ]
Salisbury, Thomas S. [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Melbourne, Vic, Australia
[2] York Univ, Dept Math & Stat, N York, ON, Canada
来源
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
random walk; non-elliptic random environment; zero-one law; ballisticity; invariance principle; PLANAR RANDOM-WALKS; ZERO-ONE LAW; PERCOLATION PROBABILITY; ORIENTED PERCOLATION; DIMENSIONS; BEHAVIOR; EXPONENTS;
D O I
10.1214/17-EJP107
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behaviour of random walks in i.i.d. non-elliptic random environments on Z(d). Standard conditions for ballisticity and the central limit theorem require ellipticity, and are typically non-local. We use oriented percolation and martingale arguments to find non-trivial local conditions for ballisticity and an annealed invariance principle in the non-elliptic setting. The use of percolation allows certain non-elliptic models to be treated even though ballisticity has not been proved for elliptic perturbations of these models.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction
    Rassoul-Agha, Firas
    Seppalaineni, Timo
    ANNALS OF PROBABILITY, 2007, 35 (01): : 1 - 31
  • [12] Quenched invariance principle for random walk in time-dependent balanced random environment
    Deuschel, Jean-Dominique
    Guo, Xiaoqin
    Ramirez, Alejandro F.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 363 - 384
  • [13] Almost Sure Invariance Principle for Continuous-Space Random Walk in Dynamic Random Environment
    Joseph, Mathew
    Rassoul-Agha, Firas
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2011, 8 : 43 - 57
  • [14] A strong invariance principle for the elephant random walk
    Coletti, Cristian F.
    Gava, Renato
    Schutz, Gunter M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [15] Strong invariance principle for a counterbalanced random walk
    TAN Hui-qun
    HU Zhi-shui
    DONG Liang
    Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (02) : 370 - 380
  • [16] Strong invariance principle for a counterbalanced random walk
    Tan, Hui-qun
    Hu, Zhi-shui
    Dong, Liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 370 - 380
  • [17] An invariance principle for a class of non-ballistic random walks in random environment
    Erich Baur
    Probability Theory and Related Fields, 2016, 166 : 463 - 514
  • [18] An invariance principle for a class of non-ballistic random walks in random environment
    Baur, Erich
    PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (1-2) : 463 - 514
  • [19] Invariance principle for diffusions in random environment
    Struckmeier, S.
    CONDENSED MATTER PHYSICS, 2008, 11 (02) : 275 - 282
  • [20] Quenched Invariance Principle for the Random Walk on the Penrose Tiling
    Bartha, Zs.
    Telcs, A.
    MARKOV PROCESSES AND RELATED FIELDS, 2014, 20 (04) : 751 - 767