Quenched Invariance Principle for the Random Walk on the Penrose Tiling

被引:0
|
作者
Bartha, Zs. [1 ]
Telcs, A. [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, H-1117 Budapest, Hungary
[2] Univ Pannonia, Fac Econ, Dept Quantitat Methods, H-8200 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
random walk; random media; Penrose tiling; quenched invariance principle; corrector method;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the simple random walk on the graph corresponding to a Penrose tiling. We prove that the path distribution of the walk converges weakly to that of a non-degenerate Brownian motion for almost every Penrose tiling with respect to the appropriate invariant measure on the set of tilings. Our tool for this is the corrector method.
引用
收藏
页码:751 / 767
页数:17
相关论文
共 50 条
  • [1] Quenched invariance principle for simple random walk on percolation clusters
    Noam Berger
    Marek Biskup
    [J]. Probability Theory and Related Fields, 2007, 137 : 83 - 120
  • [2] Quenched invariance principle for simple random walk on percolation clusters
    Berger, Noam
    Biskup, Marek
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) : 83 - 120
  • [3] Quenched invariance principle for simple random walk on discrete point processes
    Kubota, Naoki
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (10) : 3737 - 3752
  • [4] Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction
    Rassoul-Agha, Firas
    Seppalaineni, Timo
    [J]. ANNALS OF PROBABILITY, 2007, 35 (01): : 1 - 31
  • [5] Quenched invariance principle for random walk in time-dependent balanced random environment
    Deuschel, Jean-Dominique
    Guo, Xiaoqin
    Ramirez, Alejandro F.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 363 - 384
  • [6] Quenched invariance principle for simple random walk on clusters in correlated percolation models
    Procaccia, Eviatar B.
    Rosenthal, Ron
    Sapozhnikov, Artem
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2016, 166 (3-4) : 619 - 657
  • [7] Quenched invariance principle for a long-range random walk with unbounded conductances
    Zhang, Zhongyang
    Zhang, Lixin
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (02): : 921 - 952
  • [8] Quenched invariance principle for simple random walk on clusters in correlated percolation models
    Eviatar B. Procaccia
    Ron Rosenthal
    Artëm Sapozhnikov
    [J]. Probability Theory and Related Fields, 2016, 166 : 619 - 657
  • [9] Random mass splitting and a quenched invariance principle
    Banerjee, Sayan
    Hoffman, Christopher
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2016, 126 (02) : 608 - 627
  • [10] A strong invariance principle for the elephant random walk
    Coletti, Cristian F.
    Gava, Renato
    Schutz, Gunter M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,