Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction

被引:13
|
作者
Rassoul-Agha, Firas [1 ]
Seppalaineni, Timo
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
来源
ANNALS OF PROBABILITY | 2007年 / 35卷 / 01期
关键词
random walk in random environment; point of view of particle; renewal; invariant measure; invariance principle; functional central limit theorem;
D O I
10.1214/009117906000000610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a ballistic random walk in an i.i.d. random environment that does not allow retreating in a certain fixed direction. We prove an invariance principle (functional central limit theorem) under almost every fixed environment. The assumptions are nonnestling, at least two spatial dimensions, and a 2 + epsilon moment for the step of the walk uniformly in the environment. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条