Quenched invariance principle for multidimensional ballistic random walk in a random environment with a forbidden direction

被引:13
|
作者
Rassoul-Agha, Firas [1 ]
Seppalaineni, Timo
机构
[1] Univ Utah, Salt Lake City, UT 84112 USA
[2] Univ Wisconsin, Madison, WI 53706 USA
来源
ANNALS OF PROBABILITY | 2007年 / 35卷 / 01期
关键词
random walk in random environment; point of view of particle; renewal; invariant measure; invariance principle; functional central limit theorem;
D O I
10.1214/009117906000000610
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a ballistic random walk in an i.i.d. random environment that does not allow retreating in a certain fixed direction. We prove an invariance principle (functional central limit theorem) under almost every fixed environment. The assumptions are nonnestling, at least two spatial dimensions, and a 2 + epsilon moment for the step of the walk uniformly in the environment. The main point behind the invariance principle is that the quenched mean of the walk behaves subdiffusively.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 50 条
  • [31] QUENCHED INVARIANCE PRINCIPLE FOR RANDOM WALKS AMONG RANDOM DEGENERATE CONDUCTANCES
    Bella, Peter
    Schaffner, Mathias
    [J]. ANNALS OF PROBABILITY, 2020, 48 (01): : 296 - 316
  • [32] A strong invariance principle for the elephant random walk
    Coletti, Cristian F.
    Gava, Renato
    Schutz, Gunter M.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [33] Strong invariance principle for a counterbalanced random walk
    Tan, Hui-qun
    Hu, Zhi-shui
    Dong, Liang
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2024, 39 (02) : 370 - 380
  • [34] Strong invariance principle for a counterbalanced random walk
    TAN Hui-qun
    HU Zhi-shui
    DONG Liang
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2024, 39 (02) : 370 - 380
  • [35] Quenched limits for transient, ballistic, sub-Gaussian one-dimensional random walk in random environment
    Peterson, Jonathon
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 685 - 709
  • [36] A quenched invariance principle for certain ballistic random walks in i.i.d. environments
    Berger, Noam
    Zeitouni, Ofer
    [J]. IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 137 - +
  • [37] Quenched invariance principle for random walks on Delaunay triangulations
    Rousselle, Arnaud
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 32
  • [38] Invariance principle for diffusions in random environment
    Struckmeier, S.
    [J]. CONDENSED MATTER PHYSICS, 2008, 11 (02) : 275 - 282
  • [39] Quenched invariance principle for long range random walks in balanced random environments
    Chen, Xin
    Chen, Zhen-Qing
    Kumagai, Takashi
    Wang, Jian
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2243 - 2267
  • [40] A criterion for transience of multidimensional branching random walk in random environment
    Mueller, Sebastian
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1189 - 1202