Lobbes: An Algorithm for Sparse-Spike Deconvolution

被引:4
|
作者
Fernandes, Rodrigo [1 ]
Lopes, Helio [1 ]
Gattass, Marcelo [1 ]
机构
[1] Pontifical Catholic Univ Rio De Janeiro, Dept Informat, BR-22430060 Rio De Janeiro, Brazil
关键词
Deconvolution; matching pursuit algorithms; sparse matrices; statistical learning; HYPERSPECTRAL IMAGE; INVERSION; LASSO;
D O I
10.1109/LGRS.2017.2758899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes an algorithm for solving the sparse-spike deconvolution problem, named Lobbes (Lasso-based binary search for parameter selection). It improves the fast iterative shrinkage and threshold algorithm for Toeplitz-sparse matrix factorization by performing three steps to find a suitable regularization parameter: 1) a normalization procedure over the input data; 2) a binary search step based on the least absolute shrinkage and selection operator; and 3) the elimination of consecutive peaks similar to non-maximum suppression. Such parameter allows us to find a solution with a specified sparsity. We compare our results against the original algorithm and with the known sparse-inducing greedy approach of orthogonal matching pursuit. Relative to state-of-the-art, results demonstrate that Lobbes generates better results: better signal-to-noise ratio of the reconstructed signal and better result for reflectivity peaks. We also derive a new way to measure the quality of the deconvolution.
引用
收藏
页码:2240 / 2244
页数:5
相关论文
共 50 条
  • [41] A NOVEL EXTRACELLULAR SPIKE DETECTION ALGORITHM BASED ON SPARSE REPRESENTATION
    Liu, Zuo-Zhi
    Chen, Guan-Mi
    Shi, Guang-Ming
    Wu, Jin-Jian
    Xie, Xue-Mei
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 427 - 432
  • [42] Improve Signals Discrimination for an Indoor Environment Using the Sparse Deconvolution Algorithm
    Yang, Yi
    Beach, Mark
    Hilton, Geoffrey
    2017 IEEE 85TH VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2017,
  • [43] Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
    Pakmanesh, Parvaneh
    Goudarzi, Alireza
    Kourki, Meisam
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2018, 15 (03) : 621 - 626
  • [44] Blind deconvolution with sparse priors on the deconvolution filters
    Park, HM
    Lee, JH
    Oh, SH
    Lee, SY
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 658 - 665
  • [45] RECONSTRUCTION OF A SPARSE SPIKE TRAIN FROM A PORTION OF ITS SPECTRUM AND APPLICATION TO HIGH-RESOLUTION DECONVOLUTION
    LEVY, S
    FULLAGAR, PK
    GEOPHYSICS, 1981, 46 (09) : 1235 - 1243
  • [46] A LOW RANK AND SPARSE PARADIGM FREE MAPPING ALGORITHM FOR DECONVOLUTION OF FMRI DATA
    Urunuela, Eneko
    Moia, Stefano
    Caballero-Gaudes, Cesar
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1726 - 1729
  • [47] Infrared spectrum blind deconvolution algorithm via learned dictionaries and sparse representation
    Liu, Hai
    Liu, Sanya
    Huang, Tao
    Zhang, Zhaoli
    Hu, Yong
    Zhang, Tianxu
    APPLIED OPTICS, 2016, 55 (10) : 2813 - 2818
  • [48] Nonnegative image reconstruction from sparse Fourier data: a new deconvolution algorithm
    Bonettini, S.
    Prato, M.
    INVERSE PROBLEMS, 2010, 26 (09)
  • [49] Parametric deconvolution of positive spike trains
    Li, L
    Speed, TP
    ANNALS OF STATISTICS, 2000, 28 (05): : 1279 - 1301
  • [50] Sparse multichannel blind deconvolution
    Kazemi, Nasser
    Sacchi, Mauricio D.
    GEOPHYSICS, 2014, 79 (05) : V143 - V152