A LOW RANK AND SPARSE PARADIGM FREE MAPPING ALGORITHM FOR DECONVOLUTION OF FMRI DATA

被引:2
|
作者
Urunuela, Eneko [1 ,2 ]
Moia, Stefano [1 ,2 ]
Caballero-Gaudes, Cesar [1 ]
机构
[1] Basque Ctr Cognit Brain & Language, Donostia San Sebastian, Spain
[2] Univ Basque Country, Donostia San Sebastian, Spain
来源
2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2021年
关键词
functional MRI; deconvolution; low rank and sparse models; paradigm free mapping;
D O I
10.1109/ISBI48211.2021.9433821
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current deconvolution algorithms for functional magnetic resonance imaging (fMRI) data are hindered by widespread signal changes arising from motion or physiological processes (e.g. deep breaths) that can be interpreted incorrectly as neuronal-related hemodynamic events. This work proposes a novel deconvolution approach that simultaneously estimates global signal fluctuations and neuronal-related activity with no prior information about the timings of the blood oxygenation level-dependent (BOLD) events by means of a low rank plus sparse decomposition algorithm. The performance of the proposed method is evaluated on simulated and experimental fMRI data, and compared with state-of-the-art sparsity-based deconvolution approaches and with a conventional analysis that is aware of the temporal model of the neuronal-related activity. We demonstrate that the novel low-rank and sparse paradigm free mapping algorithm can estimate global signal fluctuations related to motion in our task. while estimating the neuronal-related activity with high fidelity.
引用
收藏
页码:1726 / 1729
页数:4
相关论文
共 50 条
  • [1] Quantitative Deconvolution of fMRI Data with Multi-echo Sparse Paradigm Free Mapping
    Caballero-Gaudes, Cesar
    Moia, Stefano
    Bandettini, Peter A.
    Gonzalez-Castillo, Javier
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 311 - 319
  • [2] Stability-Based Sparse Paradigm Free Mapping Algorithm for Deconvolution of Functional MRI Data
    Urunuela, Eneko
    Jones, Stephen
    Crawford, Anna
    Shin, Wanyong
    Oh, Sehong
    Lowe, Mark
    Caballero-Gaudes, Cesar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1092 - 1095
  • [3] STRUCTURED SPARSE DECONVOLUTION FOR PARADIGM FREE MAPPING OF FUNCTIONAL MRI DATA
    Caballero Gaudes, Cesar
    Karahanoglu, Fikret Isik
    Lazeyras, Francois
    Van De Ville, Dimitri
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 322 - 325
  • [4] A deconvolution algorithm for multi-echo functional MRI: Multi-echo Sparse Paradigm Free Mapping
    Caballero-Gaudes, Cesar
    Moia, Stefano
    Panwar, Puja
    Bandettini, Peter A.
    Gonzalez-Castillo, Javier
    NEUROIMAGE, 2019, 202
  • [5] Low-Rank Plus Sparse Decomposition of fMRI Data With Application to Alzheimer's Disease
    Tu, Wei
    Fu, Fangfang
    Kong, Linglong
    Jiang, Bei
    Cobzas, Dana
    Huang, Chao
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [6] A low-rank approach to off-the-grid sparse deconvolution
    Catala, Paul
    Duval, Vincent
    Peyre, Gabriel
    7TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2017, 904
  • [7] Decoding fMRI Events in Sensorimotor Motor Network Using Sparse Paradigm Free Mapping and Activation Likelihood Estimates
    Tan, Francisca M.
    Caballero-Gaudes, Cesar
    Mullinger, Karen J.
    Cho, Siu-Yeung
    Zhang, Yaping
    Dryden, Ian L.
    Francis, Susan T.
    Gowland, Penny A.
    HUMAN BRAIN MAPPING, 2017, 38 (11) : 5778 - 5794
  • [8] Paradigm-Free Mapping with Morphological Component Analysis: Getting Most Out of fMRI Data
    Gaudes, Cesar Caballero
    Van de Ville, Dimitri
    Petridou, Natalia
    Lazeyras, Francois
    Gowland, Penny
    WAVELETS AND SPARSITY XIV, 2011, 8138
  • [9] Low-rank and sparse matrices fitting algorithm for low-rank representation
    Zhao, Jianxi
    Zhao, Lina
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 407 - 425
  • [10] A New Representation for Data: Sparse and Low-Rank
    Sun, Jing
    Wu, Zongze
    Zeng, Deyu
    Ren, Zhigang
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1477 - 1482