Lobbes: An Algorithm for Sparse-Spike Deconvolution

被引:4
|
作者
Fernandes, Rodrigo [1 ]
Lopes, Helio [1 ]
Gattass, Marcelo [1 ]
机构
[1] Pontifical Catholic Univ Rio De Janeiro, Dept Informat, BR-22430060 Rio De Janeiro, Brazil
关键词
Deconvolution; matching pursuit algorithms; sparse matrices; statistical learning; HYPERSPECTRAL IMAGE; INVERSION; LASSO;
D O I
10.1109/LGRS.2017.2758899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes an algorithm for solving the sparse-spike deconvolution problem, named Lobbes (Lasso-based binary search for parameter selection). It improves the fast iterative shrinkage and threshold algorithm for Toeplitz-sparse matrix factorization by performing three steps to find a suitable regularization parameter: 1) a normalization procedure over the input data; 2) a binary search step based on the least absolute shrinkage and selection operator; and 3) the elimination of consecutive peaks similar to non-maximum suppression. Such parameter allows us to find a solution with a specified sparsity. We compare our results against the original algorithm and with the known sparse-inducing greedy approach of orthogonal matching pursuit. Relative to state-of-the-art, results demonstrate that Lobbes generates better results: better signal-to-noise ratio of the reconstructed signal and better result for reflectivity peaks. We also derive a new way to measure the quality of the deconvolution.
引用
收藏
页码:2240 / 2244
页数:5
相关论文
共 50 条
  • [21] A spectral inversion method of sparse-spike reflection coefficients based on compressed sensing
    Chen, Zuqing
    Wang, Jingbo
    Geophysical Prospecting for Petroleum, 2015, 54 (04) : 459 - 466
  • [22] Deconvolution of sparse spike trains by iterated window maximization
    Univ of Oslo, Oslo, Norway
    IEEE Trans Signal Process, 5 (1173-1183):
  • [23] Orthogonal Least Absolute Value for Sparse Spike Deconvolution
    Had, A.
    Sabri, K.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2021, 40 (04) : 1948 - 1961
  • [24] Deconvolution of sparse spike trains by iterated window maximization
    Kaaresen, KF
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (05) : 1173 - 1183
  • [25] Orthogonal Least Absolute Value for Sparse Spike Deconvolution
    A. Had
    K. Sabri
    Circuits, Systems, and Signal Processing, 2021, 40 : 1948 - 1961
  • [26] Sparse Spike Deconvolution of Seismic Data Using Trust-Region Based SQP Algorithm
    Zhou, Qingbao
    Gao, Jinghuai
    Wang, Zhiguo
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2015, 23 (04)
  • [27] Unsupervised deconvolution of sparse spike trains using stochastic approximation
    Champagnat, F
    Goussard, Y
    Idier, J
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (12) : 2988 - 2998
  • [28] Deconvolution of sparse spike trains using local selection strategy
    Fathi, L
    Ouamri, A
    Keche, M
    Ouldmammar, M
    ELECTRONICS LETTERS, 2000, 36 (04) : 364 - 365
  • [29] Multichannel sparse spike deconvolution based on dynamic time warping
    Zhao, Xiaowei
    Wang, Shangxu
    Yuan, Sanyi
    Cheng, Liang
    Cai, Youjun
    ACTA GEOPHYSICA, 2021, 69 (03) : 783 - 793
  • [30] Multichannel sparse spike deconvolution based on dynamic time warping
    Xiaowei Zhao
    Shangxu Wang
    Sanyi Yuan
    Liang Cheng
    Youjun Cai
    Acta Geophysica, 2021, 69 : 783 - 793