Lobbes: An Algorithm for Sparse-Spike Deconvolution

被引:4
|
作者
Fernandes, Rodrigo [1 ]
Lopes, Helio [1 ]
Gattass, Marcelo [1 ]
机构
[1] Pontifical Catholic Univ Rio De Janeiro, Dept Informat, BR-22430060 Rio De Janeiro, Brazil
关键词
Deconvolution; matching pursuit algorithms; sparse matrices; statistical learning; HYPERSPECTRAL IMAGE; INVERSION; LASSO;
D O I
10.1109/LGRS.2017.2758899
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter proposes an algorithm for solving the sparse-spike deconvolution problem, named Lobbes (Lasso-based binary search for parameter selection). It improves the fast iterative shrinkage and threshold algorithm for Toeplitz-sparse matrix factorization by performing three steps to find a suitable regularization parameter: 1) a normalization procedure over the input data; 2) a binary search step based on the least absolute shrinkage and selection operator; and 3) the elimination of consecutive peaks similar to non-maximum suppression. Such parameter allows us to find a solution with a specified sparsity. We compare our results against the original algorithm and with the known sparse-inducing greedy approach of orthogonal matching pursuit. Relative to state-of-the-art, results demonstrate that Lobbes generates better results: better signal-to-noise ratio of the reconstructed signal and better result for reflectivity peaks. We also derive a new way to measure the quality of the deconvolution.
引用
收藏
页码:2240 / 2244
页数:5
相关论文
共 50 条
  • [1] Stochastic sparse-spike deconvolution
    Velis, Danilo R.
    [J]. GEOPHYSICS, 2008, 73 (01) : R1 - R9
  • [2] Sparse-spike deconvolution based on adaptive step FISTA algorithm
    Pan, Shulin
    Yan, Ke
    Li, Lingyun
    Jiang, Congyuan
    Shi, Linguang
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (04): : 737 - 743
  • [3] Deep learning for multitrace sparse-spike deconvolution
    Chai, Xintao
    Tang, Genyang
    Lin, Kai
    Yan, Zhe
    Gu, Hanming
    Peng, Ronghua
    Sun, Xiaodong
    Cao, Wenjun
    [J]. GEOPHYSICS, 2021, 86 (03) : V207 - V218
  • [4] Blind sparse-spike deconvolution with thin layers and structure
    Sui, Yuhan
    Ma, Jianwei
    [J]. GEOPHYSICS, 2020, 85 (06) : V481 - V496
  • [5] A Bregman adaptive sparse-spike deconvolution method in the frequency domain
    Pan Shu-Lin
    Yan Ke
    Lan Hai-Qiang
    Qin Zi-Yu
    [J]. APPLIED GEOPHYSICS, 2019, 16 (04) : 463 - 472
  • [6] An Approximation to Sparse-Spike Reflectivity Using the Gold Deconvolution Method
    Derman Dondurur
    [J]. Pure and Applied Geophysics, 2010, 167 : 1233 - 1245
  • [7] An Approximation to Sparse-Spike Reflectivity Using the Gold Deconvolution Method
    Dondurur, Derman
    [J]. PURE AND APPLIED GEOPHYSICS, 2010, 167 (10) : 1233 - 1245
  • [8] A Bregman adaptive sparse-spike deconvolution method in the frequency domain
    Shu-Lin Pan
    Ke Yan
    Hai-Qiang Lan
    Zi-Yu Qin
    [J]. Applied Geophysics, 2019, 16 : 463 - 472
  • [9] Seismic sparse-spike deconvolution via Toeplitz-sparse matrix factorization
    Wang, Lingling
    Zhao, Qian
    Gao, Jinghuai
    Xu, Zongben
    Fehler, Michael
    Jiang, Xiudi
    [J]. GEOPHYSICS, 2016, 81 (03) : V169 - V182
  • [10] Borehole-driven sparse-spike deconvolution and seismic bandwidth enhancement
    Perez, Daniel O.
    Gelpi, Gabriel R.
    Velis, Danilo R.
    [J]. GEOPHYSICS, 2024, 89 (01) : V25 - V35