Blind sparse-spike deconvolution with thin layers and structure

被引:15
|
作者
Sui, Yuhan [1 ,2 ]
Ma, Jianwei [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Ctr Geophys, Harbin 150001, Peoples R China
[2] Sch Math, Harbin 150001, Peoples R China
[3] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
关键词
DECOMPOSITION; RESOLUTION; SHRINKAGE; ALGORITHM; RECOVERY;
D O I
10.1190/geo2019-0423.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Blind sparse-spike deconvolution is a widely used method to estimate seismic wavelets and sparse reflectivity in the shape of spikes based on the convolution model. To increase the vertical resolution and lateral continuity of the estimated reflectivity, we further improve the sparse-spike deconvolution by introducing the atomic norm minimization and structural regularization, respectively. Specifically, we use the atomic norm minimization to estimate the reflector locations, which are further used as position constraints in the sparse-spike deconvolution. By doing this, we can vertically separate highly thin layers through the sparse deconvolution. In addition, the seismic structural orientations are estimated from the seismic image to construct a structure-guided regularization in the deconvolution to preserve the lateral continuity of reflectivities. Our improvements are suitable for most types of sparse-spike deconvolution approaches. The sparse-spike deconvolution method with Toeplitz-sparse matrix factorization (TSMF) is used as an example to demonstrate the effectiveness of our improvements. Synthetic and real examples show that our methods perform better than TSMF in estimating the reflectivity of thin layers and preserving the lateral continuities.
引用
收藏
页码:V481 / V496
页数:16
相关论文
共 50 条
  • [1] Stochastic sparse-spike deconvolution
    Velis, Danilo R.
    [J]. GEOPHYSICS, 2008, 73 (01) : R1 - R9
  • [2] Lobbes: An Algorithm for Sparse-Spike Deconvolution
    Fernandes, Rodrigo
    Lopes, Helio
    Gattass, Marcelo
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) : 2240 - 2244
  • [3] Deep learning for multitrace sparse-spike deconvolution
    Chai, Xintao
    Tang, Genyang
    Lin, Kai
    Yan, Zhe
    Gu, Hanming
    Peng, Ronghua
    Sun, Xiaodong
    Cao, Wenjun
    [J]. GEOPHYSICS, 2021, 86 (03) : V207 - V218
  • [4] Sparse-spike deconvolution based on adaptive step FISTA algorithm
    Pan, Shulin
    Yan, Ke
    Li, Lingyun
    Jiang, Congyuan
    Shi, Linguang
    [J]. Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (04): : 737 - 743
  • [5] A Bregman adaptive sparse-spike deconvolution method in the frequency domain
    Pan Shu-Lin
    Yan Ke
    Lan Hai-Qiang
    Qin Zi-Yu
    [J]. APPLIED GEOPHYSICS, 2019, 16 (04) : 463 - 472
  • [6] An Approximation to Sparse-Spike Reflectivity Using the Gold Deconvolution Method
    Derman Dondurur
    [J]. Pure and Applied Geophysics, 2010, 167 : 1233 - 1245
  • [7] An Approximation to Sparse-Spike Reflectivity Using the Gold Deconvolution Method
    Dondurur, Derman
    [J]. PURE AND APPLIED GEOPHYSICS, 2010, 167 (10) : 1233 - 1245
  • [8] A Bregman adaptive sparse-spike deconvolution method in the frequency domain
    Shu-Lin Pan
    Ke Yan
    Hai-Qiang Lan
    Zi-Yu Qin
    [J]. Applied Geophysics, 2019, 16 : 463 - 472
  • [9] Seismic sparse-spike deconvolution via Toeplitz-sparse matrix factorization
    Wang, Lingling
    Zhao, Qian
    Gao, Jinghuai
    Xu, Zongben
    Fehler, Michael
    Jiang, Xiudi
    [J]. GEOPHYSICS, 2016, 81 (03) : V169 - V182
  • [10] Borehole-driven sparse-spike deconvolution and seismic bandwidth enhancement
    Perez, Daniel O.
    Gelpi, Gabriel R.
    Velis, Danilo R.
    [J]. GEOPHYSICS, 2024, 89 (01) : V25 - V35