Time-dependent general quantum quadratic Hamiltonian system

被引:31
|
作者
Yeon, KH [1 ]
Um, CI
George, TF
机构
[1] Chungbuk Natl Univ, Dept Phys, Cheonju 361763, Chungbuk, South Korea
[2] Korea Univ, Dept Phys, Seoul 136701, South Korea
[3] Univ Missouri, Dept Chem, St Louis, MO 63121 USA
[4] Univ Missouri, Dept Biochem, St Louis, MO 63121 USA
[5] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 05期
关键词
D O I
10.1103/PhysRevA.68.052108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solutions of the Schrodinger equation and propagators for the general quadratic and the linear Hamiltonian system of canonical variables whose coefficients are arbitrary and time dependent are obtained when the corresponding classical solution is oscillatory, linear, or monotonic. All of them are given by the coefficients of the Hamiltonian and the classical solution of the system under the conditions for which the classical solution exists.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [21] SYSTEM WHOSE HAMILTONIAN IS A TIME-DEPENDENT QUADRATIC FORM IN X AND P
    CHERNIKOV, NA
    SOVIET PHYSICS JETP-USSR, 1968, 26 (03): : 603 - +
  • [22] CLASSICAL EQUATIONS FOR QUANTUM SQUEEZING AND COHERENT PUMPING BY THE TIME-DEPENDENT QUADRATIC HAMILTONIAN
    PIZA, AFRD
    PHYSICAL REVIEW A, 1995, 51 (02): : 1612 - 1616
  • [23] SU(1,1) Lie Algebra Applied to the General Time-dependent Quadratic Hamiltonian System
    J. R. Choi
    I. H. Nahm
    International Journal of Theoretical Physics, 2007, 46 : 1 - 15
  • [24] Classical equations for quantum squeezing and coherent pumping by the time-dependent quadratic Hamiltonian
    de, Toledo Piza, A.F.R.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1995, 51 (02):
  • [25] SU(1,1) Lie algebra applied to the general time-dependent quadratic Hamiltonian system
    Choi, J. R.
    Nahm, I. H.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2007, 46 (01) : 1 - 15
  • [26] ON TIME-DEPENDENT QUADRATIC QUANTUM HAMILTONIANS
    WOLF, KB
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (03) : 419 - 431
  • [27] TIME-DEPENDENT QUADRATIC HAMILTONIAN AND THE HEISENBERG UNCERTAINTY PRINCIPLE
    JANNUSSIS, A
    KARAYANNIS, G
    PANAGOPOYLOS, P
    PAPATHEOU, V
    SIMEONIDIS, M
    VAVOYGIOS, D
    SIAFARIKAS, P
    ZISIS, V
    LETTERE AL NUOVO CIMENTO, 1983, 36 (02): : 41 - 43
  • [28] Numerical quantum propagation with time-dependent Hamiltonian
    Zhu, WS
    Zhao, XS
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (21): : 9536 - 9545
  • [29] QUANTUM BEHAVIOR OF GENERAL TIME-DEPENDENT QUADRATIC SYSTEMS LINEARLY COUPLED TO A BATH
    TWAMLEY, J
    PHYSICAL REVIEW A, 1993, 48 (04): : 2627 - 2633
  • [30] A quadratic time-dependent quantum harmonic oscillator
    F. E. Onah
    E. García Herrera
    J. A. Ruelas-Galván
    G. Juárez Rangel
    E. Real Norzagaray
    B. M. Rodríguez-Lara
    Scientific Reports, 13