Time-dependent general quantum quadratic Hamiltonian system

被引:31
|
作者
Yeon, KH [1 ]
Um, CI
George, TF
机构
[1] Chungbuk Natl Univ, Dept Phys, Cheonju 361763, Chungbuk, South Korea
[2] Korea Univ, Dept Phys, Seoul 136701, South Korea
[3] Univ Missouri, Dept Chem, St Louis, MO 63121 USA
[4] Univ Missouri, Dept Biochem, St Louis, MO 63121 USA
[5] Univ Missouri, Dept Phys & Astron, St Louis, MO 63121 USA
来源
PHYSICAL REVIEW A | 2003年 / 68卷 / 05期
关键词
D O I
10.1103/PhysRevA.68.052108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Solutions of the Schrodinger equation and propagators for the general quadratic and the linear Hamiltonian system of canonical variables whose coefficients are arbitrary and time dependent are obtained when the corresponding classical solution is oscillatory, linear, or monotonic. All of them are given by the coefficients of the Hamiltonian and the classical solution of the system under the conditions for which the classical solution exists.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] A quadratic time-dependent quantum harmonic oscillator
    Onah, F. E.
    Herrera, E. Garcia
    Ruelas-Galvan, J. A.
    Juarez Rangel, G.
    Real Norzagaray, E.
    Rodriguez-Lara, B. M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] Wigner Distribution Function for the Time-Dependent Quadratic-Hamiltonian Quantum System using the Lewis–Riesenfeld Invariant Operator
    Jeong Ryeol Choi
    International Journal of Theoretical Physics, 2005, 44 : 327 - 348
  • [33] TIME-DEPENDENT INVARIANT FOR THE QUADRATIC HAMILTONIAN AND THE STABLE SQUEEZED STATES
    HONGYI, F
    ZAIDI, HR
    CANADIAN JOURNAL OF PHYSICS, 1987, 65 (05) : 525 - 526
  • [34] Estimation of a general time-dependent Hamiltonian for a single qubit
    L. E. de Clercq
    R. Oswald
    C. Flühmann
    B. Keitch
    D. Kienzler
    H. -Y. Lo
    M. Marinelli
    D. Nadlinger
    V. Negnevitsky
    J. P. Home
    Nature Communications, 7
  • [35] Estimation of a general time-dependent Hamiltonian for a single qubit
    de Clercq, L. E.
    Oswald, R.
    Fluehmann, C.
    Keitch, B.
    Kienzler, D.
    Lo, H. -Y.
    Marinelli, M.
    Nadlinger, D.
    Negnevitsky, V.
    Home, J. P.
    NATURE COMMUNICATIONS, 2016, 7
  • [36] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127
  • [37] QUANTUM TOMOGRAPHY OF TIME-DEPENDENT NONLINEAR HAMILTONIAN SYSTEMS
    Man'ko, V., I
    Markovich, L. A.
    REPORTS ON MATHEMATICAL PHYSICS, 2019, 83 (01) : 87 - 106
  • [38] Wigner distribution function for the time-dependent quadratic-Hamiltonian quantum system using the Lewis-Riesenfeld invariant operator
    Choi, JR
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (03) : 327 - 348
  • [39] Exact Invariants for a Time-Dependent Hamiltonian System
    Luo Xiao-Bing
    CHINESE PHYSICS LETTERS, 2009, 26 (01)
  • [40] Dynamics of SU(1,1) coherent states for the time-dependent quadratic Hamiltonian system
    Choi, Jeong Ryeol
    OPTICS COMMUNICATIONS, 2009, 282 (18) : 3720 - 3728