A quadratic time-dependent quantum harmonic oscillator

被引:0
|
作者
F. E. Onah
E. García Herrera
J. A. Ruelas-Galván
G. Juárez Rangel
E. Real Norzagaray
B. M. Rodríguez-Lara
机构
[1] Tecnologico de Monterrey,The Division of Theoretical Physics, Physics and Astronomy
[2] Escuela de Ingeniería y Ciencias,undefined
[3] University of Nigeria Nsukka,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We present a Lie algebraic approach to a Hamiltonian class covering driven, parametric quantum harmonic oscillators where the parameter set—mass, frequency, driving strength, and parametric pumping—is time-dependent. Our unitary-transformation-based approach provides a solution to our general quadratic time-dependent quantum harmonic model. As an example, we show an analytic solution to the periodically driven quantum harmonic oscillator without the rotating wave approximation; it works for any given detuning and coupling strength regime. For the sake of validation, we provide an analytic solution to the historical Caldirola–Kanai quantum harmonic oscillator and show that there exists a unitary transformation within our framework that takes a generalized version of it onto the Paul trap Hamiltonian. In addition, we show how our approach provides the dynamics of generalized models whose Schrödinger equation becomes numerically unstable in the laboratory frame.
引用
收藏
相关论文
共 50 条
  • [1] A quadratic time-dependent quantum harmonic oscillator
    Onah, F. E.
    Herrera, E. Garcia
    Ruelas-Galvan, J. A.
    Juarez Rangel, G.
    Real Norzagaray, E.
    Rodriguez-Lara, B. M.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] QUANTUM HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY
    SOLIMENO, S
    DIPORTO, P
    CROSIGNA.B
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (10) : 1922 - &
  • [3] Quantum harmonic oscillator with time-dependent mass
    Ramos-Prieto, I
    Espinosa-Zuniga, A.
    Fernandez-Guasti, M.
    Moya-Cessa, H. M.
    [J]. MODERN PHYSICS LETTERS B, 2018, 32 (20):
  • [4] A time-dependent damped harmonic oscillator with a force quadratic in velocity
    Huang, BW
    [J]. ACTA PHYSICA SINICA, 2003, 52 (02) : 271 - 275
  • [5] Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator
    Mostafazadeh, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (30): : 6495 - 6503
  • [6] Thermodynamics of the standard quantum harmonic oscillator of time-dependent frequency with and without inverse quadratic potential
    Choi, JR
    Zhang, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12): : 2845 - 2855
  • [7] TIME-DEPENDENT HARMONIC OSCILLATOR
    SALUSTI, E
    ZIRILLI, F
    [J]. LETTERE AL NUOVO CIMENTO, 1970, 4 (21): : 999 - &
  • [8] Propagator for a time-dependent damped harmonic oscillator with a force quadratic in velocity
    Huang, BW
    Gu, ZY
    Qian, SW
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2003, 39 (02) : 155 - 156
  • [9] Quantum states of a generalized time-dependent inverted harmonic oscillator
    Pedrosa, IA
    Guedes, I
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (09): : 1379 - 1385
  • [10] Quantum tunneling effect of a time-dependent inverted harmonic oscillator
    Guo, Guang-Jie
    Ren, Zhong-Zhou
    Ju, Guo-Xing
    Guo, Xiao-Yong
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (18)