In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results

被引:53
|
作者
Goicoa, T. [1 ,2 ,4 ]
Adin, A. [1 ,2 ]
Ugarte, M. D. [1 ,2 ]
Hodges, J. S. [3 ]
机构
[1] Univ Publ Navarra, Dept Stat & OR, Pamplona, Spain
[2] Univ Publ Navarra, Inst Adv Mat InaMat, Pamplona, Spain
[3] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55455 USA
[4] Res Network Hlth Serv Chron Dis REDISSEC, Madrid, Spain
关键词
Breast cancer; INLA; Leroux CAR prior; PQL; Space-time interactions; SPACE-TIME VARIATION; APPROXIMATE INFERENCE; EMPIRICAL BAYES; RISK; LIKELIHOOD;
D O I
10.1007/s00477-017-1405-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Disease mapping studies the distribution of relative risks or rates in space and time, and typically relies on generalized linear mixed models (GLMMs) including fixed effects and spatial, temporal, and spatio-temporal random effects. These GLMMs are typically not identifiable and constraints are required to achieve sensible results. However, automatic specification of constraints can sometimes lead to misleading results. In particular, the penalized quasi-likelihood fitting technique automatically centers the random effects even when this is not necessary. In the Bayesian approach, the recently-introduced integrated nested Laplace approximations computing technique can also produce wrong results if constraints are not well-specified. In this paper the spatial, temporal, and spatio-temporal interaction random effects are reparameterized using the spectral decompositions of their precision matrices to establish the appropriate identifiability constraints. Breast cancer mortality data from Spain is used to illustrate the ideas.
引用
收藏
页码:749 / 770
页数:22
相关论文
共 50 条
  • [41] Spatio-temporal expectile regression models
    Spiegel, Elmar
    Kneib, Thomas
    Otto-Sobotka, Fabian
    STATISTICAL MODELLING, 2020, 20 (04) : 386 - 409
  • [42] Spatio-temporal stationary covariance models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 86 (01) : 97 - 107
  • [43] Spatio-temporal variograms and covariance models
    Ma, CS
    ADVANCES IN APPLIED PROBABILITY, 2005, 37 (03) : 706 - 725
  • [44] Additive models with spatio-temporal data
    Fang, Xiangming
    Chan, Kung-Sik
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (01) : 61 - 86
  • [45] Spatio-temporal Conditioned Language Models
    Diaz, Juglar
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2478 - 2478
  • [46] Conceptual models for spatio-temporal applications
    Tryfona, N
    Price, R
    Jensen, CS
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 79 - 116
  • [47] Additive models with spatio-temporal data
    Xiangming Fang
    Kung-Sik Chan
    Environmental and Ecological Statistics, 2015, 22 : 61 - 86
  • [48] Matrix Autoregressive Spatio-Temporal Models
    Hsu, Nan-Jung
    Huang, Hsin-Cheng
    Tsay, Ruey S.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2021, 30 (04) : 1143 - 1155
  • [49] Some spatio-temporal models in immunology
    Segel, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2343 - 2347
  • [50] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240