Non-Cayley tetravalent metacirculant graphs and their Hamiltonicity

被引:0
|
作者
Tan, ND
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define three families Phi(1), Phi(2) and Phi(3) of special tetravalent metacirculant graphs and show that any non-Cayley tetravalent metacirculant graph is isomorphic to a union of disjoint copies of a graph in one of the families Phi(1), Phi(2) or Phi(3). Using this result we prove further that every connected non-Cayley tetravalent metacirculant graph has a Hamilton cycle. (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [1] On non-Cayley tetravalent metacirculant graphs
    Tan, ND
    GRAPHS AND COMBINATORICS, 2002, 18 (04) : 795 - 802
  • [2] On Non-Cayley Tetravalent Metacirculant Graphs
    Ngo Dac Tan
    Graphs and Combinatorics, 2002, 18 : 795 - 802
  • [3] Existence of non-Cayley Haar graphs
    Feng, Yan-Quan
    Kovacs, Istvan
    Wang, Jie
    Yang, Da-Wei
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 89
  • [4] ON NON-CAYLEY VERTEX-TRANSITIVE GRAPHS AND THE META-CAYLEY GRAPHS
    Mwambene, Eric
    QUAESTIONES MATHEMATICAE, 2011, 34 (04) : 425 - 431
  • [5] A Conjecture Concerning a Limit of Non-Cayley Graphs
    Reinhard Diestel
    Imre Leader
    Journal of Algebraic Combinatorics, 2001, 14 : 17 - 25
  • [6] A conjecture concerning a limit of non-Cayley graphs
    Diestel, R
    Leader, I
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (01) : 17 - 25
  • [7] On the classification problem for tetravalent metacirculant graphs
    Ngo Dac Tan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2005, 8 (03): : 403 - 412
  • [8] On cubic non-Cayley vertex-transitive graphs
    Kutnar, Klavdija
    Marusic, Dragan
    Zhang, Cui
    JOURNAL OF GRAPH THEORY, 2012, 69 (01) : 77 - 95
  • [9] A note on vertex-transitive non-Cayley graphs from Cayley graphs generated by involutions
    Tomanova, Jana
    DISCRETE MATHEMATICS, 2010, 310 (01) : 192 - 195
  • [10] Large Cayley Graphs and Vertex-Transitive Non-Cayley Graphs of Given Degree and Diameter
    Macbeth, Heather
    Siagiova, Jana
    Siran, Jozef
    Vetrik, Tomas
    JOURNAL OF GRAPH THEORY, 2010, 64 (02) : 87 - 98