Non-Cayley tetravalent metacirculant graphs and their Hamiltonicity

被引:0
|
作者
Tan, ND
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define three families Phi(1), Phi(2) and Phi(3) of special tetravalent metacirculant graphs and show that any non-Cayley tetravalent metacirculant graph is isomorphic to a union of disjoint copies of a graph in one of the families Phi(1), Phi(2) or Phi(3). Using this result we prove further that every connected non-Cayley tetravalent metacirculant graph has a Hamilton cycle. (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [21] TETRAVALENT NORMAL PRIMITIVE CAYLEY GRAPHS
    Li, Jing Jian
    Ling, Bo
    Chen, Xiao Dan
    ARS COMBINATORIA, 2018, 139 : 69 - 83
  • [22] A CLASS OF NON-CAYLEY VERTEX-TRANSITIVE GRAPHS ASSOCIATED WITH PSL(2, P)
    MARUSIC, D
    SCAPELLATO, R
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 161 - 170
  • [23] Cubic vertex-transitive non-Cayley graphs of order 8p
    Zhou, Jin-Xin
    Fang, Yan-Quan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [24] On cubic vertex-transitive non-Cayley graphs of 2-power orders
    Li, Na
    Kwon, Young Soo
    Zhou, Jin-Xin
    DISCRETE MATHEMATICS, 2023, 346 (12)
  • [25] Vertex-Transitive Non-Cayley Graphs with Arbitrarily Large Vertex-Stabilizer
    Marston D.E. Conder
    Cameron G. Walker
    Journal of Algebraic Combinatorics, 1998, 8 : 29 - 38
  • [26] Tetravalent half-edge-transitive graphs and non-normal Cayley graphs
    Wang, Xiuyun
    Feng, Yan-Quan
    JOURNAL OF GRAPH THEORY, 2012, 70 (02) : 197 - 213
  • [27] Vertex-transitive non-Cayley graphs with arbitrarily large vertex-stabilizer
    Conder, MDE
    Walker, CG
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1998, 8 (01) : 29 - 38
  • [28] Cubic vertex-transitive non-Cayley graphs of order 12p
    Wei-Juan Zhang
    Yan-Quan Feng
    Jin-Xin Zhou
    Science China Mathematics, 2018, 61 : 1153 - 1162
  • [29] Cubic vertex-transitive non-Cayley graphs of order 12p
    Zhang, Wei-Juan
    Feng, Yan-Quan
    Zhou, Jin-Xin
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1153 - 1162
  • [30] Cubic vertex-transitive non-Cayley graphs of order 12p
    Wei-Juan Zhang
    Yan-Quan Feng
    Jin-Xin Zhou
    Science China(Mathematics), 2018, 61 (06) : 1153 - 1162