Non-Cayley tetravalent metacirculant graphs and their Hamiltonicity

被引:0
|
作者
Tan, ND
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define three families Phi(1), Phi(2) and Phi(3) of special tetravalent metacirculant graphs and show that any non-Cayley tetravalent metacirculant graph is isomorphic to a union of disjoint copies of a graph in one of the families Phi(1), Phi(2) or Phi(3). Using this result we prove further that every connected non-Cayley tetravalent metacirculant graph has a Hamilton cycle. (C) 1996 John Wiley & Sons, Inc.
引用
收藏
页码:273 / 287
页数:15
相关论文
共 50 条
  • [31] CUBIC CAYLEY GRAPHS OF GIRTH AT MOST 6 AND THEIR HAMILTONICITY
    Aboomahigir, E.
    Nedela, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (02): : 351 - 359
  • [32] Cubic non-Cayley vertex-transitive bi-Cayley graphs over a regular p-group
    Zhou, Jin-Xin
    Feng, Yan-Quan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (03):
  • [33] A survey on Hamiltonicity in Cayley graphs and digraphs on different groups
    Lanel, G. H. J.
    Pallage, H. K.
    Ratnayake, J. K.
    Thevasha, S.
    Welihinda, B. A. K.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [34] On tetravalent s-regular Cayley graphs
    Li, Jing Jian
    Ling, Bo
    Ma, Jicheng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (10)
  • [35] Tetravalent non-normal Cayley graphs of order 4p
    Zhou, Jin-Xin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [36] NON-CAYLEY VERTEX-TRANSITIVE GRAPHS OF ORDER TWICE THE PRODUCT OF 2 ODD PRIMES
    MILLER, AA
    PRAEGER, CE
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (01) : 77 - 111
  • [37] Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
    Ghasemi, Mohsen
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 13 (01): : 52 - 58
  • [38] On the flag graphs of regular abstract polytopes: Hamiltonicity and Cayley index
    Berman, Leah Wrenn
    Kovacs, Istvan
    Williams, Gordon I.
    DISCRETE MATHEMATICS, 2020, 343 (0I)
  • [39] A classification of tetravalent non-normal Cayley graphs of order twice a prime square
    Cui, Li
    Zhou, Jin-Xin
    Ghasemi, Mohsen
    Talebi, Ali Asghar
    Varmazyar, Rezvan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 663 - 676
  • [40] A classification of tetravalent non-normal Cayley graphs of order twice a prime square
    Li Cui
    Jin-Xin Zhou
    Mohsen Ghasemi
    Ali Asghar Talebi
    Rezvan Varmazyar
    Journal of Algebraic Combinatorics, 2021, 53 : 663 - 676