Existence of non-Cayley Haar graphs

被引:1
|
作者
Feng, Yan-Quan [1 ]
Kovacs, Istvan [2 ,3 ]
Wang, Jie [4 ]
Yang, Da-Wei [5 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Univ Primorska, IAM, Glakoljaska 8, Koper 6000, Slovenia
[3] Univ Primorska, FAMNIT, Glakoljaska 8, Koper 6000, Slovenia
[4] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[5] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMISYMMETRIC CUBIC GRAPHS; REGULAR REPRESENTATIONS;
D O I
10.1016/j.ejc.2020.103146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Cayley graph of a group H is a finite simple graph Gamma such that its automorphism group Aut(Gamma) contains a subgroup isomorphic to H acting regularly on V(Gamma), while a Haar graph of H is a finite simple bipartite graph Sigma such that Aut(Sigma) contains a subgroup isomorphic to H acting semiregularly on V(Sigma) and the H-orbits are equal to the partite sets of Sigma. It is well-known that every Haar graph of finite abelian groups is a Cayley graph. In this paper, we prove that every finite non-abelian group admits a non-Cayley Haar graph except the dihedral groups D-6, D-8, D-10, the quaternion group Q(8) and the group Q(8) x Z(2). This answers an open problem proposed by Estelyi and Pisanski in 2016. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条