WAVELET-BASED EDGE MULTISCALE FINITE ELEMENT METHOD FOR HELMHOLTZ PROBLEMS IN PERFORATED DOMAINS\ast

被引:5
|
作者
Fu, Shubin [1 ]
Li, Guanglian [2 ]
Craster, Richard [3 ]
Guenneau, Sebastien [4 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
[4] Aix Marseille Univ, CNRS, Inst Fresnel, Cent Marseille, Marseille, France
来源
MULTISCALE MODELING & SIMULATION | 2021年 / 19卷 / 04期
关键词
multiscale method; Helmholtz equation; perforated domain; wavelet-based edge multiscale finite element method; high frequency; random perforation; ELLIPTIC PROBLEMS; MAXWELLS EQUATIONS; HOMOGENIZATION; PARADIGM; LAYER;
D O I
10.1137/19M1267180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new efficient algorithm for Helmholtz problems in perforated domains with the design of the scheme allowing for possibly large wavenumbers. Our method is based upon the wavelet-based edge multiscale finite element method as proposed recently in [S. Fu, E. Chung, H, we establish \scrO (H) convergence of this algorithm under the resolution assumption with the level parameter being sufficiently large. The performance of the algorithm is demonstrated by extensive 2-dimensional numerical tests including those motivated by photonic crystals.
引用
收藏
页码:1684 / 1709
页数:26
相关论文
共 50 条
  • [1] The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains
    Patrick Henning
    Mario Ohlberger
    [J]. Numerische Mathematik, 2009, 113 : 601 - 629
  • [2] The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains
    Henning, Patrick
    Ohlberger, Mario
    [J]. NUMERISCHE MATHEMATIK, 2009, 113 (04) : 601 - 629
  • [3] A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
    Mishin, Yury A.
    Vasilyev, Oleg V.
    Gerya, Taras, V
    [J]. FLUIDS, 2022, 7 (07)
  • [4] Generalized multiscale finite element methods for problems in perforated heterogeneous domains
    Chung, Eric T.
    Efendiev, Yalchin
    Li, Guanglian
    Vasilyeva, Maria
    [J]. APPLICABLE ANALYSIS, 2016, 95 (10) : 2254 - 2279
  • [5] MULTISCALE FINITE ELEMENT METHODS FOR ADVECTION-DOMINATED PROBLEMS IN PERFORATED DOMAINS
    Le Bris, Claude
    Legoll, Frederic
    Madiot, Francois
    [J]. MULTISCALE MODELING & SIMULATION, 2019, 17 (02): : 773 - 825
  • [6] Numerical Simulation of the Transport and Flow Problems in Perforated Domains Using Generalized Multiscale Finite Element Method
    Alekseev, V.
    Gavrileva, U.
    Spiridonov, D.
    Tyrylgin, A.
    Vasilyeva, M.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [7] Study on wavelet-based fuzzy multiscale edge detection method
    Zhu, W
    Hou, BP
    Zhang, ZG
    Zhou, KN
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 703 - 709
  • [8] A study of multiscale wavelet-based elements for adaptive finite element analysis
    Chen, Xuefeng
    Xiang, Jiawei
    Li, Bing
    He, Zhengjia
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (02) : 196 - 205
  • [9] A multiscale finite element method for the Helmholtz equation
    Oberai, AA
    Pinsky, PM
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 281 - 297
  • [10] Mixed Generalized Multiscale Finite Element Method for a Simplified Magnetohydrodynamics Problem in Perforated Domains
    Alekseev, Valentin
    Tang, Qili
    Vasilyeva, Maria
    Chung, Eric T.
    Efendiev, Yalchin
    [J]. COMPUTATION, 2020, 8 (02) : 1 - 15