A study of multiscale wavelet-based elements for adaptive finite element analysis

被引:41
|
作者
Chen, Xuefeng [1 ]
Xiang, Jiawei [2 ]
Li, Bing [1 ]
He, Zhengjia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mechantron Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element methods; B-spline wavelet on the interval; Multiscale wavelet-based elements; SUPERCONVERGENT PATCH RECOVERY; B-SPLINE WAVELET; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; GALERKIN METHOD; CONSTRUCTION; INTERVAL; PLATES; PDES; KIND;
D O I
10.1016/j.advengsoft.2009.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the construction of multiscale wavelet-based elements using lifting scheme. In deriving the computational formulation of multiscale elements of B-spline wavelet on the interval (BSWI), the element displacement field represented by the coefficients of wavelets expansion in wavelet space is transformed into the physical degree of freedoms (DOFs) in finite element space via the corresponding transformation matrix. Then 2D C(0) type multiscale BSWI elements are derived to fulfill the nesting approximation of wavelet finite element method (WFEM). The wavelet-based adaptive algorithm shares the approaches involved in adaptive classical finite element methods. Numerical results indicate that the present multiscale wavelet-based elements are suit for adaptive finite element analysis, especially for singularity problems in engineering. The convergence shown in numerical examples demonstrates the reliability of the elements. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [1] A Wavelet-Based Adaptive Finite Element Method for the Stokes Problems
    Mishin, Yury A.
    Vasilyev, Oleg V.
    Gerya, Taras, V
    [J]. FLUIDS, 2022, 7 (07)
  • [2] The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems
    Wang, Youming
    Wu, Qing
    Wang, Wenqing
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2014, 50 (05) : 679 - 695
  • [3] A wavelet-based finite element method for modal analysis of beams
    Xiang, Jiawei
    Jiang, Zhansi
    Xu, Jinyong
    [J]. MANUFACTURING SCIENCE AND ENGINEERING, PTS 1-5, 2010, 97-101 : 2728 - 2731
  • [4] Spatially adaptive wavelet-based multiscale image restoration
    Banham, MR
    Katsaggelos, AK
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (04) : 619 - 634
  • [5] A wavelet-based adaptive finite element method for advection-diffusion equations
    Canuto, C
    Cravero, I
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1997, 7 (02): : 265 - 289
  • [6] Wavelet-Based Multiscale Anisotropic Diffusion With Adaptive Statistical Analysis for Image Restoration
    Zhong, Junmei
    Sun, Huifang
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (09) : 2716 - 2725
  • [7] WAVELET-BASED EDGE MULTISCALE FINITE ELEMENT METHOD FOR HELMHOLTZ PROBLEMS IN PERFORATED DOMAINS\ast
    Fu, Shubin
    Li, Guanglian
    Craster, Richard
    Guenneau, Sebastien
    [J]. MULTISCALE MODELING & SIMULATION, 2021, 19 (04): : 1684 - 1709
  • [8] Wavelet-based finite element method for multilevel local plate analysis
    Aslami, Mojtaba
    Akimov, Pavel A.
    [J]. THIN-WALLED STRUCTURES, 2016, 98 : 392 - 402
  • [9] Wavelet-based multiscale analysis of geomagnetic disturbance
    Zaourar, N.
    Hamoudi, M.
    Mandea, M.
    Balasis, G.
    Holschneider, M.
    [J]. EARTH PLANETS AND SPACE, 2013, 65 (12): : 1525 - 1540
  • [10] Wavelet-based multiscale analysis of geomagnetic disturbance
    N. Zaourar
    M. Hamoudi
    M. Mandea
    G. Balasis
    M. Holschneider
    [J]. Earth, Planets and Space, 2013, 65 : 1525 - 1540