A study of multiscale wavelet-based elements for adaptive finite element analysis

被引:41
|
作者
Chen, Xuefeng [1 ]
Xiang, Jiawei [2 ]
Li, Bing [1 ]
He, Zhengjia [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mechantron Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive finite element methods; B-spline wavelet on the interval; Multiscale wavelet-based elements; SUPERCONVERGENT PATCH RECOVERY; B-SPLINE WAVELET; DIFFERENTIAL-EQUATIONS; INTEGRAL-EQUATIONS; GALERKIN METHOD; CONSTRUCTION; INTERVAL; PLATES; PDES; KIND;
D O I
10.1016/j.advengsoft.2009.09.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper is concerned with the construction of multiscale wavelet-based elements using lifting scheme. In deriving the computational formulation of multiscale elements of B-spline wavelet on the interval (BSWI), the element displacement field represented by the coefficients of wavelets expansion in wavelet space is transformed into the physical degree of freedoms (DOFs) in finite element space via the corresponding transformation matrix. Then 2D C(0) type multiscale BSWI elements are derived to fulfill the nesting approximation of wavelet finite element method (WFEM). The wavelet-based adaptive algorithm shares the approaches involved in adaptive classical finite element methods. Numerical results indicate that the present multiscale wavelet-based elements are suit for adaptive finite element analysis, especially for singularity problems in engineering. The convergence shown in numerical examples demonstrates the reliability of the elements. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [11] One-dimensional wavelet-based finite elements
    Li, B
    Chen, XF
    Xiang, JW
    He, ZJ
    [J]. WAVELET ANALYSIS AND ITS APPLICATIONS, AND ACTIVE MEDIA TECHNOLOGY, VOLS 1 AND 2, 2004, : 1069 - 1074
  • [12] Multiscale wavelet-based analysis to detect hidden geodiversity
    Naparus-Aljancic, Magdalena
    Patru-Stupariu, Ileana
    Stupariu, Mihai Sorin
    [J]. PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2017, 41 (05): : 601 - 619
  • [13] Wavelet-Based Multiscale Intermittency Analysis: The Effect of Deformation
    Angulo, Jose M.
    Madrid, Ana E.
    [J]. ENTROPY, 2023, 25 (07)
  • [14] Affine fractal interpolation functions and wavelet-based finite elements
    Kurdila, AJ
    Sun, T
    Grama, P
    Ko, J
    [J]. COMPUTATIONAL MECHANICS, 1995, 17 (03) : 169 - 185
  • [15] Wavelet-based multiscale corner detection
    Hua, JP
    Liao, QM
    [J]. 2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 341 - 344
  • [16] A wavelet-based algebraic multigrid preconditioning for iterative solvers in finite-element analysis
    Pereira, Fabio Henrique
    Palin, Marcelo F.
    Verardi, Sergio L. L.
    Silva, Viviane C.
    Cardoso, Jose Roberto
    Nabeta, Silvio I.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1553 - 1556
  • [17] Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam
    Mokhtari, Ali
    Mirdamadi, Hamid Reza
    Ghayour, Mostafa
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 92 : 124 - 145
  • [18] A novel wavelet-based finite element method for the analysis of rotor-bearing systems
    Xiang, Jiawei
    Chen, Dongdi
    Chen, Xuefeng
    He, Zhengjia
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2009, 45 (12) : 908 - 916
  • [19] Study on wavelet-based fuzzy multiscale edge detection method
    Zhu, W
    Hou, BP
    Zhang, ZG
    Zhou, KN
    [J]. FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, PT 2, PROCEEDINGS, 2005, 3614 : 703 - 709
  • [20] An adaptive wavelet-based collocation method for solving multiscale problems in continuum mechanics
    Kaiser, Tobias
    Remmers, Joris J. C.
    Geers, Marc G. D.
    [J]. COMPUTATIONAL MECHANICS, 2022, 70 (06) : 1335 - 1357