WAVELET-BASED EDGE MULTISCALE FINITE ELEMENT METHOD FOR HELMHOLTZ PROBLEMS IN PERFORATED DOMAINS\ast

被引:5
|
作者
Fu, Shubin [1 ]
Li, Guanglian [2 ]
Craster, Richard [3 ]
Guenneau, Sebastien [4 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Hong Kong, Dept Math, Pokfulam, Hong Kong, Peoples R China
[3] Imperial Coll London, Dept Math, London SW7 2AZ, England
[4] Aix Marseille Univ, CNRS, Inst Fresnel, Cent Marseille, Marseille, France
来源
MULTISCALE MODELING & SIMULATION | 2021年 / 19卷 / 04期
关键词
multiscale method; Helmholtz equation; perforated domain; wavelet-based edge multiscale finite element method; high frequency; random perforation; ELLIPTIC PROBLEMS; MAXWELLS EQUATIONS; HOMOGENIZATION; PARADIGM; LAYER;
D O I
10.1137/19M1267180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new efficient algorithm for Helmholtz problems in perforated domains with the design of the scheme allowing for possibly large wavenumbers. Our method is based upon the wavelet-based edge multiscale finite element method as proposed recently in [S. Fu, E. Chung, H, we establish \scrO (H) convergence of this algorithm under the resolution assumption with the level parameter being sufficiently large. The performance of the algorithm is demonstrated by extensive 2-dimensional numerical tests including those motivated by photonic crystals.
引用
收藏
页码:1684 / 1709
页数:26
相关论文
共 50 条
  • [41] Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains
    Li-Qun Cao
    [J]. Numerische Mathematik, 2006, 103 : 11 - 45
  • [42] Edge-based finite element implementation of the residual-based variational multiscale method
    Lins, Erb F.
    Elias, Renato N.
    Guerra, Gabriel M.
    Rochinha, Fernando A.
    Coutinho, Alvaro L. G. A.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (01) : 1 - 22
  • [43] Wavelet-based Multilevel Discrete-Continual Finite Element Method for Local Plate Analysis
    Akimov, Pavel A.
    Mozgaleva, Marina L.
    [J]. ADVANCES IN CIVIL STRUCTURES, PTS 1 AND 2, 2013, 351-352 : 13 - 16
  • [44] A 2D wavelet-based spectral finite element method for elastic wave propagation
    Pahlavan, L.
    Kassapoglou, C.
    Suiker, A. S. J.
    Gurdal, Z.
    [J]. PHILOSOPHICAL MAGAZINE, 2012, 92 (28-30) : 3699 - 3722
  • [45] A second-generation wavelet-based finite element method for the solution of partial differential equations
    Wang, Youming
    Chen, Xuefeng
    He, Zhengjia
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1608 - 1613
  • [46] A multivariu-ble wavelet-based finite element method and its application to thick plates
    Han, JG
    Ren, WX
    Huang, Y
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2005, 41 (9-10) : 821 - 833
  • [47] Numerical solution of structural mechanics boundary problems with the use of wavelet-based boundary element method
    Kaytukov, T. B.
    Mozgaleva, M. L.
    Akimov, P. A.
    [J]. VII INTERNATIONAL SYMPOSIUM ACTUAL PROBLEMS OF COMPUTATIONAL SIMULATION IN CIVIL ENGINEERING, 2018, 456
  • [49] Analysis of a finite-infinite element method for exterior Helmholtz problems
    Ihlenburg, F.
    Demkowicz, L.
    [J]. Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 78 (Suppl 3):
  • [50] A finite-element capacitance matrix method for exterior Helmholtz problems
    Ernst, OG
    [J]. NUMERISCHE MATHEMATIK, 1996, 75 (02) : 175 - 204