The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains

被引:53
|
作者
Henning, Patrick [1 ]
Ohlberger, Mario [1 ]
机构
[1] Inst Numer & Angew Math, D-48149 Munster, Germany
关键词
LOCAL MODELING ERROR; 2-SCALE FEM;
D O I
10.1007/s00211-009-0244-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution we analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by E and Engquist (Commun Math Sci 1(1): 87-132, 2003) for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix is computed by solving local cell problems on the microscale. A-posteriori error estimates are derived in L-2(Omega) by reformulating the problem into a discrete two-scale formulation (see also, Ohlberger in Multiscale Model Simul 4(1): 88-114, 2005) and using duality methods afterwards. Numerical experiments are given in order to numerically evaluate the efficiency of the error estimate.
引用
收藏
页码:601 / 629
页数:29
相关论文
共 50 条
  • [1] The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains
    Patrick Henning
    Mario Ohlberger
    Numerische Mathematik, 2009, 113 : 601 - 629
  • [2] ANALYSIS OF THE FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR QUASILINEAR ELLIPTIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Vilmart, Gilles
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 513 - 536
  • [3] A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems
    Ohlberger, M
    MULTISCALE MODELING & SIMULATION, 2005, 4 (01): : 88 - 114
  • [4] Generalized multiscale finite element methods for problems in perforated heterogeneous domains
    Chung, Eric T.
    Efendiev, Yalchin
    Li, Guanglian
    Vasilyeva, Maria
    APPLICABLE ANALYSIS, 2016, 95 (10) : 2254 - 2279
  • [5] REDUCED BASIS FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR QU ASILINEAR ELLIPTIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Bai, Yun
    Vilmart, Gilles
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2015, 8 (01): : 91 - 118
  • [6] Adaptive finite element heterogeneous multiscale method for homogenization problems
    Abdulle, A.
    Nonnenmacher, A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (37-40) : 2710 - 2726
  • [7] THE MULTISCALE FINITE ELEMENT METHOD WITH NONCONFORMING ELEMENTS FOR ELLIPTIC HOMOGENIZATION PROBLEMS
    Chen, Zhangxin
    Cui, Ming
    Savchuk, Tatyana Y.
    Yu, Xijun
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 517 - 538
  • [8] Analysis of the heterogeneous multiscale method for elliptic homogenization problems
    E, WN
    Ming, PG
    Zhang, PW
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) : 121 - 156
  • [9] Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems
    Abdulle, Assyr
    Bai, Yun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (21) : 7014 - 7036
  • [10] FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR NONLINEAR MONOTONE PARABOLIC HOMOGENIZATION PROBLEMS
    Abdulle, Assyr
    Huber, Martin E.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1659 - 1697