Mapping ash species across a mixed forest using hyperspectral imagery

被引:5
|
作者
Furniss, John [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Gara, Tawanda W. [1 ]
Daigle, John [1 ]
Costanza, Kara K. L. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] US Forest Serv, State & Private Forestry, Forest Hlth Protect, USDA, Missoula, MT USA
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BORER;
D O I
10.1080/2150704X.2022.2040753
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
North American ash species (Fraxinus spp.) are under dire threat from the invasive pest, emerald ash borer (Agrilus planipennis, EAB), and mapping ash trees is of utmost significance for conservation and prevention efforts. We developed remote sensing techniques to identify ash trees at the individual tree level in a mixed-species forest in Maine, USA, using hyperspectral bands combined with derived spectral vegetation indices (SVIs), texture metrics using Random Forest (RF) and Support Vector Machine (SVM) algorithms. The pixel-based SVM-Optimized model proved to be the most accurate classification method with the lowest number of input variables including six Minimum Noise Fraction (MNF)-reduced bands, four SVIs and two texture variables, achieving 78.2% overall accuracy and 81.0% ash Producer's Accuracy. The technique presented in this study could be used to map ash trees throughout Maine and other states with similar forest types for future preservation efforts.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 50 条
  • [41] Detecting invasive plant species using hyperspectral satellite imagery
    Tsai, F
    Lin, EK
    Wang, HH
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 3002 - 3005
  • [42] Classification of the forest cover of Tver oblast using hyperspectral airborne imagery
    Dmitriev, E. V.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2014, 50 (09) : 929 - 942
  • [43] Classification of the forest cover of Tver oblast using hyperspectral airborne imagery
    E. V. Dmitriev
    Izvestiya, Atmospheric and Oceanic Physics, 2014, 50 : 929 - 942
  • [44] An Automatic Procedure for Forest Fire Fuel Mapping Using Hyperspectral (PRISMA) Imagery: A Semi-Supervised Classification Approach
    Shaik, Riyaaz Uddien
    Laneve, Giovanni
    Fusilli, Lorenzo
    REMOTE SENSING, 2022, 14 (05)
  • [45] Mapping the Leaf Economic Spectrum across West African Tropical Forests Using UAV-Acquired Hyperspectral Imagery
    Thomson, Eleanor R.
    Malhi, Yadvinder
    Bartholomeus, Harm
    Oliveras, Imma
    Gvozdevaite, Agne
    Peprah, Theresa
    Suomalainen, Juha
    Quansah, John
    Seidu, John
    Adonteng, Christian
    Abraham, Andrew J.
    Herold, Martin
    Adu-Bredu, Stephen
    Doughty, Christopher E.
    REMOTE SENSING, 2018, 10 (10)
  • [46] Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987-2010
    Czerwinski, Chris J.
    King, Douglas J.
    Mitchell, Scott W.
    REMOTE SENSING OF ENVIRONMENT, 2014, 141 : 188 - 200
  • [47] TREE SPECIES MAPPING OF A HEMIBOREAL MIXED FOREST USING MASK R-CNN
    Yoshii, Tatsuki
    Lin, Chinsu
    Tatsuhara, Satoshi
    Suzuki, Satoshi
    Hiroshima, Takuya
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6228 - 6231
  • [48] Soil Organic Matter Mapping Using Hyperspectral Imagery and Elevation Data
    Gedminas, Laurynas
    Martin, Stan
    2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [49] Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery
    Dian, Yuanyong
    Li, Zengyuan
    Pang, Yong
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2015, 43 (01) : 101 - 107
  • [50] Spectral and Texture Features Combined for Forest Tree species Classification with Airborne Hyperspectral Imagery
    Yuanyong Dian
    Zengyuan Li
    Yong Pang
    Journal of the Indian Society of Remote Sensing, 2015, 43 : 101 - 107