Mapping ash species across a mixed forest using hyperspectral imagery

被引:5
|
作者
Furniss, John [1 ]
Rahimzadeh-Bajgiran, Parinaz [1 ]
Gara, Tawanda W. [1 ]
Daigle, John [1 ]
Costanza, Kara K. L. [2 ]
机构
[1] Univ Maine, Sch Forest Resources, Coll Nat Sci Forestry & Agr, Orono, ME 04469 USA
[2] US Forest Serv, State & Private Forestry, Forest Hlth Protect, USDA, Missoula, MT USA
基金
美国国家航空航天局; 美国食品与农业研究所;
关键词
BORER;
D O I
10.1080/2150704X.2022.2040753
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
North American ash species (Fraxinus spp.) are under dire threat from the invasive pest, emerald ash borer (Agrilus planipennis, EAB), and mapping ash trees is of utmost significance for conservation and prevention efforts. We developed remote sensing techniques to identify ash trees at the individual tree level in a mixed-species forest in Maine, USA, using hyperspectral bands combined with derived spectral vegetation indices (SVIs), texture metrics using Random Forest (RF) and Support Vector Machine (SVM) algorithms. The pixel-based SVM-Optimized model proved to be the most accurate classification method with the lowest number of input variables including six Minimum Noise Fraction (MNF)-reduced bands, four SVIs and two texture variables, achieving 78.2% overall accuracy and 81.0% ash Producer's Accuracy. The technique presented in this study could be used to map ash trees throughout Maine and other states with similar forest types for future preservation efforts.
引用
收藏
页码:441 / 451
页数:11
相关论文
共 50 条
  • [31] Mapping coastal vegetation using an expert system and hyperspectral imagery
    Schmidt, KS
    Skidmore, AK
    Kloosterman, EH
    Van Oosten, H
    Kumar, L
    Janssen, JAM
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2004, 70 (06): : 703 - 715
  • [32] Mapping of continuous floristic gradients in grasslands using hyperspectral imagery
    Schmidtlein, S
    Sassin, J
    REMOTE SENSING OF ENVIRONMENT, 2004, 92 (01) : 126 - 138
  • [33] URBAN VEGETATION MAPPING USING HYPERSPECTRAL IMAGERY AND SPECTRAL LIBRARY
    Ouerghemmi, Walid
    Gadal, Sebastien
    Mozgeris, Gintautas
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1632 - 1635
  • [34] ANALYSIS OF CROWN SPECTRAL CHARACTERISTIC AND TREE SPECIES MAPPING OF TROPICAL FOREST USING HYPERSPECTRAL IMAGING
    Hasmadi, I. Mohd
    Kamaruzaman, J.
    Hidayah, M. A. Nurul
    JOURNAL OF TROPICAL FOREST SCIENCE, 2010, 22 (01) : 67 - 73
  • [35] Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery
    Cho, Moses Azong
    Skidmore, Andrew K.
    Sobhan, Istiak
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2009, 11 (03): : 201 - 211
  • [36] Subpixel mapping of raw hyperspectral imagery
    Wang, Liguo
    Zhao, ChunHui
    Zhang, Ye
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 1770 - 1773
  • [37] Mine site mapping with hyperspectral imagery
    Taylor, GR
    Vukovic, D
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 634 - 636
  • [38] Mapping dryland salinity with hyperspectral imagery
    Taylor, GR
    Hemphill, P
    Currie, D
    Broadfoot, T
    Dehaan, RL
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 302 - 304
  • [39] Mapping individual silver fir trees using hyperspectral and LiDAR data in a Central European mixed forest
    Shi, Yifang
    Wang, Tiejun
    Skidmore, Andrew K.
    Holzwarth, Stefanie
    Heiden, Uta
    Heurich, Marco
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 98
  • [40] MIXED NOISE REDUCTION IN HYPERSPECTRAL IMAGERY
    Rasti, Behnood
    Ghamisi, Pedram
    Chanussot, Jocelyn
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,